欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023届无锡市南长区重点达标名校中考数学考前最后一卷含解析.doc

    • 资源ID:87784309       资源大小:838KB        全文页数:17页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023届无锡市南长区重点达标名校中考数学考前最后一卷含解析.doc

    2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1已知,则的值为ABCD2如图,正六边形ABCDEF内接于O,半径为4,则这个正六边形的边心距OM的长为()A2B2CD43(2016福建省莆田市)如图,OP是AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定POCPOD的选项是()APCOA,PDOBBOC=ODCOPC=OPDDPC=PD4下列四个图案中,不是轴对称图案的是()ABCD5如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AEBD,EFBC,tanABC=,EF=,则AB的长为()ABC1D6若,则的值为( )A12B2C3D07式子有意义的x的取值范围是( )A且x1Bx1CD且x18某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )ABCD9中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )A0.96×107B9.6×106C96×105D9.6×10210计算-5+1的结果为( )A-6B-4C4D6二、填空题(本大题共6个小题,每小题3分,共18分)11已知图中RtABC,B=90°,AB=BC,斜边AC上的一点D,满足AD=AB,将线段AC绕点A逆时针旋转 (0°< <360°),得到线段AC,连接DC,当DC/BC时,旋转角度 的值为_,12关于x的方程x23x20的两根为x1,x2,则x1x2x1x2的值为_13如图,在ABC和EDB中,CEBD90°,点E在AB上若ABCEDB,AC4,BC3,则AE_14如图是某商品的标志图案,AC与BD是O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,BAC=36°,则图中阴影部分的面积为_15有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是_16如图,CD是RtABC斜边AB上的高,将BCD沿CD折叠,B点恰好落在AB的中点E处,则A等于_度三、解答题(共8题,共72分)17(8分)化简:(x7)(x6)(x2)(x1)18(8分)如图,在ABC中,ABAC,以AB为直径作半圆O,交BC于点D,连接AD过点D作DEAC,垂足为点E求证:DE是O的切线;当O半径为3,CE2时,求BD长19(8分)如图,在平面直角坐标系中,AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2)以点O为旋转中心,将AOB逆时针旋转90°,得到A1OB1画出A1OB1;直接写出点A1和点B1的坐标;求线段OB1的长度20(8分)如图 1,在等腰ABC 中,AB=AC,点 D,E 分别为 BC,AB 的中点,连接 AD在线段 AD 上任取一点 P,连接 PB,PE若 BC=4,AD=6,设 PD=x(当点 P 与点 D 重合时,x 的值为 0),PB+PE=y小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究 下面是小明的探究过程,请补充完整:(1)通过取点、画图、计算,得到了 x 与 y 的几组值,如下表:x0123456y5.2 4.24.65.97.69.5说明:补全表格时,相关数值保留一位小数(参考数据:1.414,1.732,2.236)(2)建立平面直角坐标系(图 2),描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)求函数 y 的最小值(保留一位小数),此时点 P 在图 1 中的什么位置21(8分)解不等式:122(10分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且SABC=1求a的值;当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围23(12分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格24如图,ABC是O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形(1)求证:AC=CE;(2)求证:BC2AC2=ABAC;(1)已知O的半径为1若=,求BC的长;当为何值时,ABAC的值最大?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】由题意得,4x0,x40,解得x=4,则y=3,则=,故选:C. 2、B【解析】分析:连接OC、OB,证出BOC是等边三角形,根据锐角三角函数的定义求解即可详解:如图所示,连接OC、OB多边形ABCDEF是正六边形,BOC=60°,OC=OB,BOC是等边三角形,OBM=60°,OM=OBsinOBM=4×2.故选B.点睛:考查的是正六边形的性质、等边三角形的判定与性质、三角函数;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键3、D【解析】试题分析:对于A,由PCOA,PDOB得出PCO=PDO=90°,根据AAS判定定理可以判定POCPOD;对于B OC=OD,根据SAS判定定理可以判定POCPOD;对于C,OPC=OPD,根据ASA判定定理可以判定POCPOD;,对于D,PC=PD,无法判定POCPOD,故选D考点:角平分线的性质;全等三角形的判定4、B【解析】根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误故选:B【点睛】本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.5、B【解析】由平行四边形性质得出AB=CD,ABCD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出ECF=ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长【详解】四边形ABCD是平行四边形,ABDC,AB=CD,AEBD,四边形ABDE是平行四边形,AB=DE,AB=DE=CD,即D为CE中点,EFBC,EFC=90°,ABCD,ECF=ABC,tanECF=tanABC=,在RtCFE中,EF=,tanECF=,CF=,根据勾股定理得,CE=,AB=CE=,故选B【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=CE是解决问题的关键6、A【解析】先根据得出,然后利用提公因式法和完全平方公式对进行变形,然后整体代入即可求值【详解】,故选:A【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键7、A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须且故选A8、B【解析】试题解析:列表如下:共有20种等可能的结果,P(一男一女)=故选B9、B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B考点:科学记数法表示较大的数10、B【解析】根据有理数的加法法则计算即可【详解】解:-5+1=-(5-1)=-1故选B【点睛】本题考查了有理数的加法二、填空题(本大题共6个小题,每小题3分,共18分)11、15或255°【解析】如下图,设直线DC与AB相交于点E,RtABC中,B=90°,AB=BC,DC/BC,AED=ABC=90°,ADE=ACB=BAC=45°,AB=AC,AE=AD,又AD=AB,AC=AC,AE=AB=AC=AC,C=30°,EAC=60°,CAC=60°-45°=15°, 即当DCBC时,旋转角=15°;同理,当DCBC时,旋转角=180°-45°-60°=255°;综上所述,当旋转角=15°或255°时,DC/BC.故答案为:15°或255°.12、5【解析】试题分析:利用根与系数的关系进行求解即可.解:x1,x2是方程x23x20的两根,x1+ x2,x1x2,x1x2x1x23+25.故答案为:5.13、1【解析】试题分析:在RtACB中,C=90°,AC=4,BC=3,由勾股定理得:AB=5,ABCEDB,BE=AC=4,AE=54=1.考点:全等三角形的性质;勾股定理14、10cm1【解析】根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到BAC=ABO=36°,由圆周角定理得到AOD=71°,于是得到结论【详解】解:AC与BD是O的两条直径,ABC=ADC=DAB=BCD=90°,四边形ABCD是矩形,SABO=SCDO =SAOD=SBOD,图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,OA=OB,BAC=ABO=36°,AOD=71°,图中阴影部分的面积=1×=10,故答案为10cm1点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键15、【解析】列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可【详解】解:列表得:两个骰子向上的一面的点数和小于6的有10种,则其和小于6的概率是,故答案为:【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比16、30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则A=30°.考点:折叠图形的性质三、解答题(共8题,共72分)17、2x40.【解析】原式利用多项式乘以多项式法则计算,去括号合并即可.【详解】解:原式x26x7x42x2x2x22x40.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键18、(1)证明见解析;(2)BD2【解析】(1)连接OD,AB为0的直径得ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为ABC的中位线,所以ODAC,而DEAC,则ODDE,然后根据切线的判定方法即可得到结论;(2)由B=C,CED=BDA=90°,得出DECADB,得出,从而求得BDCD=ABCE,由BD=CD,即可求得BD2=ABCE,然后代入数据即可得到结果【详解】(1)证明:连接OD,如图,AB为0的直径,ADB90°,ADBC,ABAC,AD平分BC,即DBDC,OAOB,OD为ABC的中位线,ODAC,DEAC,ODDE,DE是0的切线;(2)BC,CEDBDA90°,DECADB,BDCDABCE,BDCD,BD2ABCE,O半径为3,CE2,BD2【点睛】本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线也考查了等腰三角形的性质、三角形相似的判定和性质19、(1)作图见解析;(2)A1(0,1),点B1(2,2)(3) 【解析】(1)按要求作图.(2)由(1)得出坐标.(3)由图观察得到,再根据勾股定理得到长度.【详解】解:(1)画出A1OB1,如图(2)点A1(0,1),点B1(2,2)(3)OB1OB2【点睛】本题主要考查的是绘图、识图、勾股定理等知识点,熟练掌握方法是本题的解题关键.20、(1)4.5(2)根据数据画图见解析;(3)函数 y 的最小值为4.2,线段AD上靠近D点三等分点处.【解析】(1)取点后测量即可解答;(2)建立坐标系后,描点、连线画出图形即可;(3)根据所画的图象可知函数y的最小值为4.2,此时点 P 在图 1 中的位置为线段 AD 上靠近 D 点三等分点处.【详解】(1)根据题意,作图得,y=4.5故答案为:4.5(2)根据数据画图得(3)根据图象,函数 y 的最小值为 4.2,此时点 P 在图 1 中的位置为线段 AD 上靠近 D 点三等分点处.【点睛】本题为动点问题的函数图象问题,正确作出图象,利用数形结合思想是解决本题的关键.21、x【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得【详解】2(23x)3(x1)6,46x3x+36,6x3x643,9x1,x【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变22、 (1) ac3;(3)a=1;m或m【解析】(1)设A (p,q)则B (-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p3,a3,且C(3,-1),求得p±,根据三角形的面积公式列方程即可得到结果;由可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4)得到这些MN的解析式yx+(-1x3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到()若-1x13且x33,()若x1-1且-1x33:列方程组即可得到结论【详解】(1)设A (p,q)则B (-p,-q),把A、B坐标代入解析式可得:,3ap3+3c=3即p3,3,ac3,3,ac3;(3)c=-1,p3,a3,且C(3,-1),p±,SABC=×3×1=1,a=1;由可知:抛物线解析式为y=x3-3mx-1,M(-1,1)、N(3,4)MN:yx+(-1x3),依题,只需联立在-1x3内只有一个解即可,x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,=(3m+)3+113且c=-3,抛物线yx3(3m+)x与x轴有两个交点,且交y轴于负半轴不妨设方程x3(3m+)x3的两根分别为x1,x3(x1x3)则x1+x33m+,x1x3方程x3(3m+)x3在-1x3内只有一个解故分两种情况讨论:()若-1x13且x33:则即:,可得:m()若x1-1且-1x33:则即:,可得:m,综上所述,m或m【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键23、2.4元/米【解析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可【详解】解:设去年用水的价格每立方米元,则今年用水价格为每立方米元由题意列方程得:解得经检验,是原方程的解(元/立方米)答:今年居民用水的价格为每立方米元【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键24、(1)证明见解析;(2)证明见解析;(1)BC=4;【解析】分析:(1)由菱形知D=BEC,由A+D=BEC+AEC=180°可得A=AEC,据此得证;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证BEFBGA得,即BFBG=BEAB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;(1)设AB=5k、AC=1k,由BC2-AC2=ABAC知BC=2k,连接ED交BC于点M,RtDMC中由DC=AC=1k、MC=BC=k求得DM=k,可知OM=OD-DM=1-k,在RtCOM中,由OM2+MC2=OC2可得答案设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得ABAC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案详解:(1)四边形EBDC为菱形,D=BEC,四边形ABDC是圆的内接四边形,A+D=180°,又BEC+AEC=180°,A=AEC,AC=CE;(2)以点C为圆心,CE长为半径作C,与BC交于点F,于BC延长线交于点G,则CF=CG,由(1)知AC=CE=CD,CF=CG=AC,四边形AEFG是C的内接四边形,G+AEF=180°,又AEF+BEF=180°,G=BEF,EBF=GBA,BEFBGA,即BFBG=BEAB,BF=BCCF=BCAC、BG=BC+CG=BC+AC,BE=CE=AC,(BCAC)(BC+AC)=ABAC,即BC2AC2=ABAC;(1)设AB=5k、AC=1k,BC2AC2=ABAC,BC=2k,连接ED交BC于点M,四边形BDCE是菱形,DE垂直平分BC,则点E、O、M、D共线,在RtDMC中,DC=AC=1k,MC=BC=k,DM=,OM=ODDM=1k,在RtCOM中,由OM2+MC2=OC2得(1k)2+(k)2=12,解得:k=或k=0(舍),BC=2k=4;设OM=d,则MD=1d,MC2=OC2OM2=9d2,BC2=(2MC)2=164d2,AC2=DC2=DM2+CM2=(1d)2+9d2,由(2)得ABAC=BC2AC2=4d2+6d+18=4(d)2+,当d=,即OM=时,ABAC最大,最大值为,DC2=,AC=DC=,AB=,此时点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点

    注意事项

    本文(2023届无锡市南长区重点达标名校中考数学考前最后一卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开