2023届广东省佛山市顺德区容桂中学初中数学毕业考试模拟冲刺卷含解析.doc
-
资源ID:87784328
资源大小:867.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届广东省佛山市顺德区容桂中学初中数学毕业考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1甲、乙两车从A地出发,匀速驶向B地甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示下列说法:乙车的速度是120km/h;m160;点H的坐标是(7,80);n7.1其中说法正确的有()A4个B3个C2个D1个2某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为ABx(x+1)=1980C2x(x+1)=1980Dx(x-1)=19803实数5.22的绝对值是()A5.22B5.22C±5.22D4有下列四种说法:半径确定了,圆就确定了;直径是弦;弦是直径;半圆是弧,但弧不一定是半圆其中,错误的说法有()A1种B2种C3种D4种5将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()ABCD6如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A10 cm3以上,20 cm3以下B20 cm3以上,30 cm3以下C30 cm3以上,40 cm3以下D40 cm3以上,50 cm3以下7如图,在五边形ABCDE中,A+B+E=300°,DP,CP分别平分EDC、BCD,则P的度数是( )A60°B65°C55°D50°8如图是某个几何体的三视图,该几何体是()A三棱柱B三棱锥C圆柱D圆锥9如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示cos的值,错误的是( )ABCD10如图,l1l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=()A5:2B4:3C2:1D3:2二、填空题(共7小题,每小题3分,满分21分)11如图,在直角坐标平面xOy中,点A坐标为,AB与x轴交于点C,那么AC:BC的值为_12对于一元二次方程,根的判别式中的表示的数是_13分解因式:4a2-4a+1=_14在ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于_(结果用、的线性组合表示)15若反比例函数y的图象与一次函数yx+k的图象有一个交点为(m,4),则这个反比例函数的表达式为_16九章算术是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为_步17在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_个三、解答题(共7小题,满分69分)18(10分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示)(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 19(5分)如图,已知二次函数的图象与x轴交于A,B两点,与y轴交于点C,的半径为,P为上一动点点B,C的坐标分别为_,_;是否存在点P,使得为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;连接PB,若E为PB的中点,连接OE,则OE的最大值_20(8分)在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A求抛物线顶点M的坐标;若点A的坐标为,轴,交抛物线于点B,求点B的坐标;在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围21(10分)如图,ABD是O的内接三角形,E是弦BD的中点,点C是O外一点且DBCA,连接OE延长与圆相交于点F,与BC相交于点C求证:BC是O的切线;若O的半径为6,BC8,求弦BD的长22(10分)如图1,在长方形ABCD中,点P从A出发,沿的路线运动,到D停止;点Q从D点出发,沿路线运动,到A点停止若P、Q两点同时出发,速度分别为每秒、,a秒时P、Q两点同时改变速度,分别变为每秒、(P、Q两点速度改变后一直保持此速度,直到停止),如图2是的面积和运动时间(秒)的图象(1)求出a值;(2)设点P已行的路程为,点Q还剩的路程为,请分别求出改变速度后,和运动时间(秒)的关系式;(3)求P、Q两点都在BC边上,x为何值时P,Q两点相距3cm?23(12分)化简,再求值:24(14分)在等边ABC外侧作直线AM,点C关于AM的对称点为D,连接BD交AM于点E,连接CE,CD,AD.(1)依题意补全图1,并求BEC的度数;(2)如图2,当MAC30°时,判断线段BE与DE之间的数量关系,并加以证明;(3)若0°MAC120°,当线段DE2BE时,直接写出MAC的度数.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲则说明乙每小时比甲快40km,则乙的速度为120km/h正确;由图象第26小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,错误故选B【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态2、D【解析】根据题意得:每人要赠送(x1)张相片,有x个人,然后根据题意可列出方程【详解】根据题意得:每人要赠送(x1)张相片,有x个人,全班共送:(x1)x=1980,故选D【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x1)张相片,有x个人是解决问题的关键.3、A【解析】根据绝对值的性质进行解答即可【详解】实数5.1的绝对值是5.1故选A【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键4、B【解析】根据弦的定义、弧的定义、以及确定圆的条件即可解决【详解】解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误;直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确其中错误说法的是两个故选B【点睛】本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆5、A【解析】分析:面动成体由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转详解:A、上面小下面大,侧面是曲面,故本选项正确;B、上面大下面小,侧面是曲面,故本选项错误;C、是一个圆台,故本选项错误;D、下面小上面大侧面是曲面,故本选项错误;故选A点睛:本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转6、C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可详解:设玻璃球的体积为x,则有解得30x1故一颗玻璃球的体积在30cm3以上,1cm3以下故选C点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x的取值范围7、A【解析】试题分析:根据五边形的内角和等于540°,由A+B+E=300°,可求BCD+CDE的度数,再根据角平分线的定义可得PDC与PCD的角度和,进一步求得P的度数解:五边形的内角和等于540°,A+B+E=300°,BCD+CDE=540°300°=240°,BCD、CDE的平分线在五边形内相交于点O,PDC+PCD=(BCD+CDE)=120°,P=180°120°=60°故选A考点:多边形内角与外角;三角形内角和定理8、A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A考点:由三视图判定几何体.9、D【解析】根据锐角三角函数的定义,余弦是邻边比斜边,可得答案【详解】cos=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.10、D【解析】依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值【详解】l1l2,设AG=3x,BD=5x,BC:CD=3:2,CD=BD=2x,AGCD,故选D【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例二、填空题(共7小题,每小题3分,满分21分)11、【解析】过点A作ADy轴,垂足为D,作BEy轴,垂足为E.先证ADOOEB,再根据OAB30°求出三角形的相似比,得到OD:OE=2,根据平行线分线段成比例得到AC:BC=OD:OE=2=【详解】解:如图所示:过点A作ADy轴,垂足为D,作BEy轴,垂足为E.OAB30°,ADE90°,DEB90°DOA+BOE90°,OBE+BOE90°DOA=OBEADOOEBOAB30°,AOB90°,OAOB=点A坐标为(3,2)AD=3,OD=2ADOOEBOEOCADBE根据平行线分线段成比例得:AC:BC=OD:OE=2=故答案为.【点睛】本题考查三角形相似的证明以及平行线分线段成比例.12、-5【解析】分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可【详解】解:表示一元二次方程的一次项系数【点睛】此题考查根的判别式,在解一元二次方程时程根的判别式=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值a代表二次项系数,b代表一次项系数,c是常数项13、【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式【详解】解:故答案为【点睛】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握14、【解析】根据三角形法则求出即可解决问题;【详解】如图,=, =,=+=-,BD=BC,=故答案为【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型15、y【解析】把交点坐标代入两个解析式组成方程组,解方程组求得k,即可求得反比例函数的解析式【详解】解:反比例函数y的图象与一次函数yx+k的图象有一个交点为(m,4),解得k5,反比例函数的表达式为y,故答案为y【点睛】本题考查了反比例函数与一次函数的交点问题,根据图象上点的坐标特征得出方程组是解题的关键16、【解析】分析:由正方形的性质得到EDG=90°,从而KDC+HDA=90°,再由C+KDC=90°,得到C=HDA,即有CKDDHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论详解:DEFG是正方形,EDG=90°,KDC+HDA=90°C+KDC=90°,C=HDACKD=DHA=90°,CKDDHA,CK:KD=HD:HA,CK:100=100:15,解得:CK=故答案为:点睛:本题考查了相似三角形的应用解题的关键是证明CKDDHA17、1【解析】估计利用频率估计概率可估计摸到黑球的概率为0.3,然后根据概率公式计算这个口袋中黑球的数量,继而得出答案【详解】因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20-6=1个,故答案为:1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确三、解答题(共7小题,满分69分)18、(1);(1) ;(3);【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1=;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1=故答案为考点:列表法与树状图法19、(1)B(1,0),C(0,4);(2)点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)【解析】试题分析:(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)当PB与相切时,PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2的值,过P2作P2Ex轴于E,P2Fy轴于F,根据相似三角形的性质得到 =2,设OC=P2E=2x,CP2=OE=x,得到BE=1x,CF=2x4,于是得到FP2,EP2的值,求得P2的坐标,过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2),当BCPC时,PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP,由OB=OA,BE=EP,推出OE=AP,可知当AP最大时,OE的值最大试题解析:(1)在中,令y=0,则x=±1,令x=0,则y=4,B(1,0),C(0,4);故答案为1,0;0,4;(2)存在点P,使得PBC为直角三角形,分两种情况:当PB与相切时,PBC为直角三角形,如图(2)a,连接BC,OB=1OC=4,BC=5,CP2BP2,CP2=,BP2=,过P2作P2Ex轴于E,P2Fy轴于F,则CP2FBP2E,四边形OCP2B是矩形,=2,设OC=P2E=2x,CP2=OE=x,BE=1x,CF=2x4, =2,x=,2x=,FP2=,EP2=,P2(,),过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2);当BCPC时,PBC为直角三角形,过P4作P4Hy轴于H,则BOCCHP4, =,CH=,P4H=,P4(,4);同理P1(,4);综上所述:点P的坐标为:(1,2)或(,)或(,4)或(,4);(1)如图(1),连接AP,OB=OA,BE=EP,OE=AP,当AP最大时,OE的值最大,当P在AC的延长线上时,AP的值最大,最大值=,OE的最大值为故答案为20、(1)M的坐标为;(2)B(4,3);(3)或【解析】利用配方法将已知函数解析式转化为顶点式方程,可以直接得到答案 根据抛物线的对称性质解答;利用待定系数法求得抛物线的表达式为根据题意作出图象G,结合图象求得m的取值范围【详解】解:(1) ,该抛物线的顶点M的坐标为;由知,该抛物线的顶点M的坐标为;该抛物线的对称轴直线是,点A的坐标为,轴,交抛物线于点B,点A与点B关于直线对称,;抛物线与y轴交于点,抛物线的表达式为抛物线G的解析式为:由由,得:抛物线与x轴的交点C的坐标为,点C关于y轴的对称点的坐标为把代入,得:把代入,得:所求m的取值范围是或故答案为(1)M的坐标为;(2)B(4,3);(3)或【点睛】本题考查了二次函数图象与几何变换,待定系数法求二次函数的解析式、二次函数的图象和性质,画出函数G的图象是解题的关键21、(1)详见解析;(2)BD=9.6.【解析】试题分析:(1)连接OB,由垂径定理可得BE=DE,OEBD, ,再由圆周角定理可得 ,从而得到 OBE DBC90°,即 ,命题得证.(2)由勾股定理求出OC,再由OBC的面积求出BE,即可得出弦BD的长.试题解析:(1)证明:如下图所示,连接OB. E是弦BD的中点, BEDE,OE BD, BOE A, OBE BOE90°. DBC A, BOE DBC, OBE DBC90°, OBC90°,即BCOB, BC是 O的切线(2)解: OB6,BC8,BCOB, , , ,.点睛:本题主要考查圆中的计算问题,解题的关键在于清楚角度的转换方式和弦长的计算方法.22、(1)6;(2);(3)10或;【解析】(1)根据图象变化确定a秒时,P点位置,利用面积求a;(2)P、Q两点的函数关系式都是在运动6秒的基础上得到的,因此注意在总时间内减去6秒;(3)以(2)为基础可知,两个点相距3cm分为相遇前相距或相遇后相距,因此由(2)可列方程【详解】(1)由图象可知,当点P在BC上运动时,APD的面积保持不变,则a秒时,点P在AB上,AP=6,则a=6;(2)由(1)6秒后点P变速,则点P已行的路程为y1=6+2(x6)=2x6,Q点路程总长为34cm,第6秒时已经走12cm,故点Q还剩的路程为y2=3412;(3)当P、Q两点相遇前相距3cm时,(2x6)=3,解得x=10,当P、Q两点相遇后相距3cm时,(2x6)()=3,解得x=,当x=10或时,P、Q两点相距3cm【点睛】本题是双动点问题,解答时应注意分析图象的变化与动点运动位置之间的关系列函数关系式时,要考虑到时间x的连续性才能直接列出函数关系式23、【解析】试题分析:把分式化简,然后把x的值代入化简后的式子求值就可以了试题解析:原式=当时,原式=.考点:1.二次根式的化简求值;2.分式的化简求值24、(1)补全图形如图1所示,见解析,BEC60°;(2)BE2DE,见解析;(3)MAC90°.【解析】(1)根据轴对称作出图形,先判断出ABDADBy,再利用三角形的内角和得出x+y即可得出结论;(2)同(1)的方法判断出四边形ABCD是菱形,进而得出CBD30°,进而得出BCD90°,即可得出结论;(3)先作出EF2BE,进而判断出EFCE,再判断出CBE90°,进而得出BCE30°,得出AEC60°,即可得出结论.【详解】(1)补全图形如图1所示,根据轴对称得,ADAC,DAECAEx,DEMCEM.ABC是等边三角形,ABAC,BAC60°.ABAD.ABDADBy.在ABD中,2x+2y+60°180°,x+y60°.DEMCEMx+y60°.BEC60°;(2)BE2DE,证明:ABC是等边三角形,ABBCAC,由对称知,ADAC,CAD2CAM60°,ACD是等边三角形,CDAD,ABBCCDAD,四边形ABCD是菱形,且BAD2CAD120°,ABC60°,ABDDBC30°,由(1)知,BEC60°,ECB90°.BE2CE.CEDE,BE2DE.(3)如图3,(本身点C,A,D在同一条直线上,为了说明CBD90°,画图时,没画在一条直线上)延长EB至F使BEBF,EF2BE,由轴对称得,DECE,DE2BE,CE2BE,EFCE,连接CF,同(1)的方法得,BEC60°,CEF是等边三角形,BEBF,CBE90°,BCE30°,ACE30°,AEDAEC,BEC60°,AEC60°,MAC180°AECACE90°.【点睛】此题是三角形综合题,主要考查了等边三角形的判定和性质,轴对称的性质,等腰三角形的性质,三角形的内角和定理,作出图形是解本题的关键.