2023届山西省朔州市朔城区四中学~达标名校中考一模数学试题含解析.doc
-
资源ID:87784616
资源大小:819KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届山西省朔州市朔城区四中学~达标名校中考一模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列计算结果正确的是()ABCD26的相反数为A-6B6CD3如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A黑(3,3),白(3,1)B黑(3,1),白(3,3)C黑(1,5),白(5,5)D黑(3,2),白(3,3)4如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A4B3C2D15如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为A6B8C10D126如果向北走6km记作+6km,那么向南走8km记作()A+8km B8km C+14km D2km7一元二次方程x23x+1=0的根的情况()A有两个相等的实数根B有两个不相等的实数根C没有实数根D以上答案都不对8某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A方差 B极差 C中位数 D平均数9若关于x的不等式组恰有3个整数解,则字母a的取值范围是()Aa1B2a1Ca1D2a110下列各式中的变形,错误的是()ABCD11如图,直线AB与半径为2的O相切于点C,D是O上一点,且EDC=30°,弦EFAB,则EF的长度为( )A2B2CD212如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数上,且OAOB,则k的值为()A2B4C4D2二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,已知直线,直线m、n与a、b、c分别交于点A、C、E和B、D、F,如果,那么_14同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 15如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_16方程的两个根为、,则的值等于_17计算:(a2)2=_18一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)先化简,再求值÷(x),其中x=20(6分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少(直接写出方案)21(6分)计算: .22(8分)抛物线y=ax2+bx+3(a0)经过点A(1,0),B(,0),且与y轴相交于点C(1)求这条抛物线的表达式;(2)求ACB的度数;(3)点D是抛物线上的一动点,是否存在点D,使得tanDCB=tanACO若存在,请求出点D的坐标,若不存在,说明理由23(8分)如图,抛物线yx2+5x+n经过点A(1,0),与y轴交于点B(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且PAB是以AB为腰的等腰三角形,试求P点坐标24(10分)如图,在ABC 中,AB=AC,CD是ACB的平分线,DEBC,交AC于点 E求证:DE=CE 若CDE=35°,求A 的度数 25(10分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润26(12分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线求证:ADECBF;若ADB是直角,则四边形BEDF是什么四边形?证明你的结论27(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】利用幂的乘方、同底数幂的乘法、合并同类项及零指数幂的定义分别计算后即可确定正确的选项【详解】A、原式,故错误;B、原式,故错误;C、利用合并同类项的知识可知该选项正确;D、,所以原式无意义,错误,故选C【点睛】本题考查了幂的运算性质及特殊角的三角函数值的知识,解题的关键是能够利用有关法则进行正确的运算,难度不大2、A【解析】根据相反数的定义进行求解.【详解】1的相反数为:1故选A.【点睛】本题主要考查相反数的定义,熟练掌握相反数的定义是解答的关键,绝对值相等,符号相反的两个数互为相反数.3、A【解析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可【详解】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误故选:A【点睛】此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键4、A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案详解:根据题意,得:=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为 (66)2+(76)2+(36)2+(96)2+(56)2=4,故选A点睛:此题考查了平均数和方差的定义平均数是所有数据的和除以数据的个数方差是一组数据中各数据与它们的平均数的差的平方的平均数5、C【解析】连接AD,由于ABC是等腰三角形,点D是BC边的中点,故ADBC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论【详解】连接AD,ABC是等腰三角形,点D是BC边的中点,ADBC,SABC=BCAD=×4×AD=16,解得AD=8,EF是线段AC的垂直平分线,点C关于直线EF的对称点为点A,AD的长为CM+MD的最小值,CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1故选C【点睛】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键6、B【解析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量若向北走6km记作+6km,那么向南走8km记作8km故选:B【点睛】本题考查正负数在生活中的应用注意用正负数表示的量必须是具有相反意义的量7、B【解析】首先确定a=1,b=-3,c=1,然后求出=b2-4ac的值,进而作出判断【详解】a=1,b=-3,c=1,=(-3)2-4×1×1=50,一元二次方程x2-3x+1=0两个不相等的实数根;故选B【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数;(3)0方程没有实数根8、C【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了故选C9、B【解析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出字母a的取值范围.【详解】解:x的不等式组恰有3个整数解,整数解为1,0,-1,-2a-1.故选B.【点睛】本题考查了一元一次不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.10、D【解析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案【详解】A、,故A正确;B、分子、分母同时乘以1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、,故D错误;故选:D【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变11、B【解析】本题考查的圆与直线的位置关系中的相切连接OC,EC所以EOC=2D=60°,所以ECO为等边三角形又因为弦EFAB所以OC垂直EF故OEF=30°所以EF=OE=212、C【解析】试题分析:作ACx轴于点C,作BDx轴于点D则BDO=ACO=90°,则BOD+OBD=90°,OAOB,BOD+AOC=90°,BOD=AOC,OBDAOC,=(tanA)2=2,又SAOC=×2=1,SOBD=2,k=-1故选C考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】由直线abc,根据平行线分线段成比例定理,即可得,又由AC3,CE5,DF4,即可求得BD的长.【详解】解:由直线abc,根据平行线分线段成比例定理,即可得,又由AC3,CE5,DF4可得:解得:BD=.故答案为.【点睛】此题考查了平行线分线段成比例定理.题目比较简单,解题的关键是注意数形结合思想的应用.14、【解析】试题分析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率=故答案为考点:列表法与树状图法15、2【解析】试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形ACD和BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,=16;,得出考点:不等式的性质点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键16、1【解析】根据一元二次方程根与系数的关系求解即可.【详解】解:根据题意得,所以=1故答案为1【点睛】本题考查了根与系数的关系:若、是一元二次方程(a0)的两根时,17、a1【解析】根据幂的乘方法则进行计算即可.【详解】 故答案为【点睛】考查幂的乘方,掌握运算法则是解题的关键.18、-1.【解析】因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解【详解】一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,由根与系数关系:-1x1=1,解得x1=-1故答案为-1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、6【解析】【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.【详解】原式=,当x=,原式=6.【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.20、(1)这种篮球的标价为每个50元;(2)见解析【解析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x元,依题意,得,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,单独在B超市购买:100×50×0.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.21、10【解析】【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.【详解】原式=1+9-+4=10-+=10.【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.22、(1)y=2x2+x+3;(2)ACB=45°;(3)D点坐标为(1,2)或(4,25)【解析】(1)设交点式y=a(x+1)(x),展开得到a=3,然后求出a即可得到抛物线解析式;(2)作AEBC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出ACE即可;(3)作BHCD于H,如图2,设H(m,n),证明RtBCHRtACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m)2+n2=()2,m2+(n3)2=()2,接着通过解方程组得到H(,)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可【详解】(1)设抛物线解析式为y=a(x+1)(x),即y=ax2axa,a=3,解得:a=2,抛物线解析式为y=2x2+x+3;(2)作AEBC于E,如图1,当x=0时,y=2x2+x+3=3,则C(0,3),而A(1,0),B(,0),AC=,BC=AEBC=OCAB,AE=在RtACE中,sinACE=,ACE=45°,即ACB=45°;(3)作BHCD于H,如图2,设H(m,n)tanDCB=tanACO,HCB=ACO,RtBCHRtACO,=,即=,BH=,CH=,(m)2+n2=()2=,m2+(n3)2=()2=,得m=2n+,把代入得:(2n+)2+n2=,整理得:80n248n9=0,解得:n1=,n2=当n=时,m=2n+=,此时H(,),易得直线CD的解析式为y=7x+3,解方程组得:或,此时D点坐标为(4,25);当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=x+3,解方程组得:或,此时D点坐标为(1,2)综上所述:D点坐标为(1,2)或(4,25)【点睛】本题是二次函数综合题熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题23、(1);(2)(0,)或(0,4)【解析】试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;(2)本题要分两种情况进行讨论:PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标试题解析:(1)抛物线经过点A(1,0),;(2)抛物线的解析式为,令,则,B点坐标(0,4),AB=,当PB=AB时,PB=AB=,OP=PBOB=P(0,),当PA=AB时,P、B关于x轴对称,P(0,4),因此P点的坐标为(0,)或(0,4)考点:二次函数综合题24、 (1)见解析;(2) 40°.【解析】(1)根据角平分线的性质可得出BCD=ECD,由DEBC可得出EDC=BCD,进而可得出EDC=ECD,再利用等角对等边即可证出DE=CE;(2)由(1)可得出ECD=EDC=35°,进而可得出ACB=2ECD=70°,再根据等腰三角形的性质结合三角形内角和定理即可求出A的度数【详解】(1)CD是ACB的平分线,BCD=ECDDEBC,EDC=BCD,EDC=ECD,DE=CE(2)ECD=EDC=35°,ACB=2ECD=70°AB=AC,ABC=ACB=70°,A=180°70°70°=40°【点睛】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线解题的关键是:(1)根据平行线的性质结合角平分线的性质找出EDC=ECD;(2)利用角平分线的性质结合等腰三角形的性质求出ACB=ABC=70°25、(1)y是x的一次函数,y=30x+1(2)w=30x2780x31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元【解析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同(2)销售利润=每个许愿瓶的利润×销售量(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润【详解】解:(1)y是x的一次函数,设y=kx+b,图象过点(10,300),(12,240),解得y=30x1当x=14时,y=180;当x=16时,y=120,点(14,180),(16,120)均在函数y=30x+1图象上y与x之间的函数关系式为y=30x+1(2)w=(x6)(30x1)=30x2780x31,w与x之间的函数关系式为w=30x2780x31(3)由题意得:6(30x+1)900,解得x3w=30x2780x31图象对称轴为:a=300,抛物线开口向下,当x3时,w随x增大而减小当x=3时,w最大=4以3元/个的价格销售这批许愿瓶可获得最大利润4元26、(1)证明见解析;(2)若ADB是直角,则四边形BEDF是菱形,理由见解析.【解析】(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,A=C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定ADECBF;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形证明四边形BEDF是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以ADEF,又ADBD,所以BDEF,根据菱形的判定可以得到四边形是菱形【详解】(1)证明:四边形ABCD是平行四边形,AD=BC,AB=CD,A=C,E、F分别为边AB、CD的中点,AE=AB,CF=CD,AE=CF,在ADE和CBF中,ADECBF(SAS);(2)若ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又ABCD,BEDF,BE=DF,四边形BEDF是平行四边形,连接EF,在ABCD中,E、F分别为边AB、CD的中点,DFAE,DF=AE,四边形AEFD是平行四边形,EFAD,ADB是直角,ADBD,EFBD,又四边形BFDE是平行四边形,四边形BFDE是菱形【点睛】1、平行四边形的性质;2、全等三角形的判定与性质;3、菱形的判定27、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)4.【解析】试题分析:(1)设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解试题解析:设甲种玩具进价x元/件,则乙种玩具进价为(40x)元/件,x=15,经检验x=15是原方程的解40x=1甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48y)件,解得20y2因为y是整数,甲种玩具的件数少于乙种玩具的件数,y取20,21,22,23,共有4种方案考点:分式方程的应用;一元一次不等式组的应用