2023届江苏省兴化市安丰初中中考数学对点突破模拟试卷含解析.doc
-
资源ID:87784721
资源大小:697KB
全文页数:14页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江苏省兴化市安丰初中中考数学对点突破模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A1.23×106B1.23×107C0.123×107D12.3×1052某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A+18B18C+18D183方程的解是( )ABCD4一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A8,6 B7,6 C7,8 D8,75如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )A12cmB20cmC24cmD28cm6如图,等腰ABC中,ABAC10,BC6,直线MN垂直平分AB交AC于D,连接BD,则BCD的周长等于()A13B14C15D167下列各数:1.414,0,其中是无理数的为( )A1.414BCD08已知,如图,AB/CD,DCF=100°,则AEF的度数为 ( )A120°B110°C100°D80°9如图,二次函数y=ax2+bx+c(a0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=-1,点B的坐标为(1,0),则下列结论:AB=4;b2-4ac0;ab0;a2-ab+ac0,其中正确的结论有()个A3B4C2D110已知BAC=45。,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的O与射线AC有公共点,那么x的取值范围是( )A0x1B1xC0xDx二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_12如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是_13分解因式:_.14数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计)若要求折出的盒子体积最大,则正方体的棱长等于_15如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是 16边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_.三、解答题(共8题,共72分)17(8分)某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 18(8分)(1)计算:(2)解方程:x24x+2019(8分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;(3)连接ME,并直接写出EM的长20(8分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?21(8分)计算:+-2+6tan30°22(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?23(12分)观察与思考:阅读下列材料,并解决后面的问题在锐角ABC中,A、B、C的对边分别是a、b、c,过A作ADBC于D(如图(1)),则sinB=,sinC=,即ADcsinB,ADbsinC,于是csinBbsinC,即,同理有:,所以即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据上述材料,完成下列各题(1)如图(2),ABC中,B45°,C75°,BC60,则A ;AC ;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB(结果精确到0.01,2.449)24某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:请将图2的统计图补充完整;根据本次调查的数据,每周参加课外辅导班的学科数的众数是 个学科;若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有 人参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:科学记数法的表示形式为的形式,其中为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数详解:1230000这个数用科学记数法可以表示为 故选A.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.2、B【解析】根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.3、D【解析】按照解分式方程的步骤进行计算,注意结果要检验.【详解】解:经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果要检验.4、D【解析】试题分析:根据中位数和众数的定义分别进行解答即可把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数5、C【解析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2r=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径【详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:2r=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm故选C【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长6、D【解析】由AB的垂直平分MN交AC于D,根据线段垂直平分线的性质,即可求得AD=BD,又由CDB的周长为:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案【详解】解:MN是线段AB的垂直平分线,ADBD,ABAC10,BD+CDAD+CDAC10,BCD的周长AC+BC10+616,故选D【点睛】此题考查了线段垂直平分线的性质,比较简单,注意数形结合思想与转化思想的应用7、B【解析】试题分析:根据无理数的定义可得是无理数故答案选B.考点:无理数的定义.8、D【解析】先利用邻补角得到DCE=80°,然后根据平行线的性质求解【详解】DCF=100°,DCE=80°,ABCD,AEF=DCE=80°故选D【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等9、A【解析】利用抛物线的对称性可确定A点坐标为(-3,0),则可对进行判断;利用判别式的意义和抛物线与x轴有2个交点可对进行判断;由抛物线开口向下得到a0,再利用对称轴方程得到b=2a0,则可对进行判断;利用x=-1时,y0,即a-b+c0和a0可对进行判断【详解】抛物线的对称轴为直线x=-1,点B的坐标为(1,0),A(-3,0),AB=1-(-3)=4,所以正确;抛物线与x轴有2个交点,=b2-4ac0,所以正确;抛物线开口向下,a0,抛物线的对称轴为直线x=-=-1,b=2a0,ab0,所以错误;x=-1时,y0,a-b+c0,而a0,a(a-b+c)0,所以正确故选A【点睛】本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a0),=b2-4ac决定抛物线与x轴的交点个数:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点也考查了二次函数的性质10、C【解析】如下图,设O与射线AC相切于点D,连接OD,ADO=90°,BAC=45°,ADO是等腰直角三角形,AD=DO=1,OA=,此时O与射线AC有唯一公共点点D,若O再向右移动,则O与射线AC就没有公共点了,x的取值范围是.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11、或10 【解析】试题分析:根据题意,可分为E点在DC上和E在DC的延长线上,两种情况求解即可:如图,当点E在DC上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=2,设FE=x,则FE=x,QE=4-x,在RtEQF中,(4-x)2+22=x2,所以x=(2)如图,当,所以FQ=点E在DG的延长线上时,点D的对应点F刚好落在线段AB的垂直平分线QP上,易求FP=3,所以FQ=8,设DE=x,则FE=x,QE=x-4,在RtEQF中,(x-4)2+82=x2,所以x=10,综上所述,DE=或10.12、【解析】因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|<d<R+r,求得圆D与圆O的半径代入计算即可.【详解】连接OA、OD,过O点作ONAE,OMAF.AN=AE=1,AM=AF=2,MD=AD-AM=3四边形ABCD是矩形BAD=ANO=AMO=90°,四边形OMAN是矩形OM=AN=1OA=,OD=以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交【点睛】本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.13、 (x+y)(x-y)【解析】直接利用平方差公式因式分解即可,即原式=(x+y)(x-y),故答案为(x+y)(x-y).14、【解析】根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得【详解】解:如图示,根据题意可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即,解得故答案为:【点睛】本题考查了勾股定理的应用,正确理解题意是解题的关键15、10【解析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可【详解】如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.四边形ABCD是正方形,B、D关于AC对称,PB=PD,PB+PE=PD+PE=DE.BE=2,AE=3BE,AE=6,AB=8,DE=10,故PB+PE的最小值是10.故答案为10.16、1a1【解析】结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积【详解】阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积=(1a)1+a1-×1a×3a=4a1+a1-3a1=1a1故答案为:1a1【点睛】此题考查了整式的混合运算,关键是列出求阴影部分面积的式子三、解答题(共8题,共72分)17、(1);(1) ;(3);【解析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1=;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1=故答案为考点:列表法与树状图法18、(1)-1;(2)x12+,x22【解析】(1)按照实数的运算法则依次计算即可;(2)利用配方法解方程【详解】(1)原式21+2×1;(2)x24x+20,x24x2,x24x+42+4,即(x2)22,x2±,x12+,x22【点睛】此题考查计算能力,(1)考查实数的计算,正确掌握绝对值的定义,零次幂的定义,特殊角度的三角函数值是解题的关键;(2)是解一元二次方程,能根据方程的特点选择适合的解法是解题的关键.19、(1)画图见解析;(2)画图见解析;(3)【解析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得EM=.【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.20、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,解得:答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)5×283×60320元答:购买5副乒乓球拍和3副羽毛球拍共320元21、10 +【解析】根据实数的性质进行化简即可计算.【详解】原式=9-1+2-+6×=10-=10 +【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.22、10,1【解析】试题分析:可以设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的一边的长为m,由题意得出方程求出边长的值试题解析:设矩形猪舍垂直于住房墙一边长为m,可以得出平行于墙的 一边的长为m,由题意得化简,得,解得:当时,(舍去),当时,答:所围矩形猪舍的长为10m、宽为1m 考点:一元二次方程的应用题23、(1)60,20;(2)渔政船距海岛A的距离AB约为24.49海里【解析】(1)利用题目总结的正弦定理,将有关数据代入求解即可;(2)在ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可【详解】(1)由正玄定理得:A60°,AC20;故答案为60°,20;(2)如图:依题意,得BC40×0.520(海里)CDBE,DCBCBE180°.DCB30°,CBE150°.ABE75°,ABC75°,A45°.在ABC中,即,解得AB1024.49(海里)答:渔政船距海岛A的距离AB约为24.49海里【点睛】本题考查了方向角的知识,更重要的是考查了同学们的阅读理解能力,通过材料总结出学生们没有接触的知识,并根据此知识点解决相关的问题,是近几年中考的高频考点24、(1)图形见解析;(2)1;(3)1.【解析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得【详解】解:(1)被调查的总人数为20÷20%100(人),则辅导1个学科(B类别)的人数为100(20+30+10+5)35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000× 1(人),故答案为1【点睛】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键