2023届山西省稷山县中考数学模试卷含解析.doc
-
资源ID:87784815
资源大小:767KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届山西省稷山县中考数学模试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列关于x的方程一定有实数解的是( )ABCD2用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A4B6C16D83若一组数据1、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )A0B2.5C3 D54有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的()A平均数B中位数C众数D方差5若点P(3,y1)和点Q(1,y2)在正比例函数y=k2x(k0)图象上,则y1与y2的大小关系为()Ay1y2 By1y2 Cy1y2 Dy1y26如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,按照此规律继续下去,则S9的值为( )A()6B()7C()6D()77若关于x的一元二次方程x22x+m0没有实数根,则实数m的取值是( )Am1Bm1Cm1Dm182的绝对值是( )A2BCD92014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()ABCD10如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )ABCD二、填空题(共7小题,每小题3分,满分21分)11计算:的值是_12已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为_13若关于的不等式组无解, 则的取值范围是 _.14若4a+3b=1,则8a+6b-3的值为_.15一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为_.16如图,在直角坐标平面xOy中,点A坐标为,AB与x轴交于点C,那么AC:BC的值为_17小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 三、解答题(共7小题,满分69分)18(10分)已知关于的一元二次方程 (为实数且)求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值19(5分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为(1)求口袋中黄球的个数;(2)甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;20(8分)如图,在四边形ABCD中,ABDC,ABAD,对角线AC,BD交于点O,AC平分BAD,过点C作CEAB交AB的延长线于点E,连接OE求证:四边形ABCD是菱形;若AB,BD2,求OE的长21(10分)(1)计算:14+sin61°+()2()1(2)解不等式组,并把它的解集在数轴上表示出来22(10分)如图,在ABC中,点D,E分别在边AB,AC上,且BE平分ABC,ABE=ACD,BE,CD交于点F(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CDAB,AD=2,BD=3,求线段EF的长23(12分)如图,平面直角坐标系xOy中,已知点A(0,3),点B(,0),连接AB,若对于平面内一点C,当ABC是以AB为腰的等腰三角形时,称点C是线段AB的“等长点”(1)在点C1(2,3+2),点C2(0,2),点C3(3+,)中,线段AB的“等长点”是点_;(2)若点D(m,n)是线段AB的“等长点”,且DAB=60°,求点D的坐标;(3)若直线y=kx+3k上至少存在一个线段AB的“等长点”,求k的取值范围24(14分)已知:如图1在RtABC中,C=90°,AC=8cm,BC=6cm,点P由点B出发沿BA方向向点A匀速运动,速度为2cm/s;同时点Q由点A出发沿AC方向点C匀速运动,速度为lcm/s;连接PQ,设运动的时间为t秒(0t5),解答下列问题:(1)当为t何值时,PQBC;(2)设AQP的面积为y(cm2),求y关于t的函数关系式,并求出y的最大值;(3)如图2,连接PC,并把PQC沿QC翻折,得到四边形PQPC,是否存在某时刻t,使四边形PQP'C为菱形?若存在,求出此时t的值;若不存在,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得【详解】Ax2-mx-1=0中=m2+40,一定有两个不相等的实数根,符合题意;Bax=3中当a=0时,方程无解,不符合题意;C由可解得不等式组无解,不符合题意;D有增根x=1,此方程无解,不符合题意;故选A【点睛】本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根2、A【解析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8,底面半径=8÷2【详解】解:由题意知:底面周长=8,底面半径=8÷2=1故选A【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长3、C【解析】解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,(1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,符合排列顺序(2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=2,解得a=0,不符合排列顺序(1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=a,解得a=2.5,符合排列顺序(4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5,不符合排列顺序(5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,这组数据1、a、2、1、4的平均数与中位数相同,0.2a+2=1,解得a=5;符合排列顺序;综上,可得:a=0、2.5或5,a不可能是1故选C【点睛】本题考查中位数;算术平均数4、B【解析】由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数故选B【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用5、A【解析】分别将点P(3,y1)和点Q(1,y2)代入正比例函数y=k2x,求出y1与y2的值比较大小即可.【详解】点P(3,y1)和点Q(1,y2)在正比例函数y=k2x(k0)图象上,y1=k2×(-3)=3k2,y2=k2×(-1)=k2,k0,y1y2.故答案选A.【点睛】本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.6、A【解析】试题分析:如图所示正方形ABCD的边长为2,CDE为等腰直角三角形,DE2+CE2=CD2,DE=CE,S2+S2=S1观察发现规律:S1=22=4,S2=S1=2,S2=S2=1,S4=S2=,由此可得Sn=()n2当n=9时,S9=()92=()6,故选A考点:勾股定理7、C【解析】试题解析:关于的一元二次方程没有实数根,解得:故选C8、A【解析】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点2到原点的距离是2,所以2的绝对值是2,故选A9、C【解析】根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式【详解】2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,2014年我省财政收入为a(1+8.9%)亿元,2015年比2014年增长9.5%,2015年我省财政收为b亿元,2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C【点睛】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题10、A【解析】试题解析:一个斜坡长130m,坡顶离水平地面的距离为50m,这个斜坡的水平距离为:=10m,这个斜坡的坡度为:50:10=5:1故选A点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】解:=1故答案为:112、y=【解析】解:设这个反比例函数的表达式为y=P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,x1y1=x2y2=k,=,=,=,=,k=2(x2x1)x2=x1+2,x2x1=2,k=2×2=4,这个反比例函数的解析式为:y=故答案为y=点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数同时考查了式子的变形13、【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得【详解】,解得:xa+3,解得:x1根据题意得:a+31,解得:a-2故答案是:a-2【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤.14、-1【解析】先求出8a+6b的值,然后整体代入进行计算即可得解【详解】4a+3b=1,8a+6b=2,8a+6b-3=2-3=-1;故答案为:-1【点睛】本题考查了代数式求值,整体思想的利用是解题的关键15、2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长详解:解方程x2-10x+21=0得x1=3、x2=1,3第三边的边长9,第三边的边长为1这个三角形的周长是3+6+1=2故答案为2点睛:本题考查了解一元二次方程和三角形的三边关系已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和16、【解析】过点A作ADy轴,垂足为D,作BEy轴,垂足为E.先证ADOOEB,再根据OAB30°求出三角形的相似比,得到OD:OE=2,根据平行线分线段成比例得到AC:BC=OD:OE=2=【详解】解:如图所示:过点A作ADy轴,垂足为D,作BEy轴,垂足为E.OAB30°,ADE90°,DEB90°DOA+BOE90°,OBE+BOE90°DOA=OBEADOOEBOAB30°,AOB90°,OAOB=点A坐标为(3,2)AD=3,OD=2ADOOEBOEOCADBE根据平行线分线段成比例得:AC:BC=OD:OE=2=故答案为.【点睛】本题考查三角形相似的证明以及平行线分线段成比例.17、【解析】根据题意可知,掷一次骰子有6个可能结果,而点数为奇数的结果有3个,所以点数为奇数的概率为考点:概率公式三、解答题(共7小题,满分69分)18、 (1)证明见解析;(2)或 【解析】(1)求出的值,再判断出其符号即可;(2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可【详解】(1)依题意,得 , ,方程总有两个实数根 (2), , 方程的两个实数根都是整数,且是正整数,或或【点睛】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac的关系是解答此题的关键19、 (1)1;(2) 【解析】(1)设口袋中黄球的个数为x个,根据从中任意摸出一个球是红球的概率为和概率公式列出方程,解方程即可求得答案;(2)根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出都是红球的情况,再利用概率公式即可求得答案;【详解】解:(1)设口袋中黄球的个数为个,根据题意得: 解得:=1 经检验:=1是原分式方程的解口袋中黄球的个数为1个(2)画树状图得: 共有12种等可能的结果,两次摸出都是红球的有2种情况两次摸出都是红球的概率为: .【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件20、(1)见解析;(1)OE1【解析】(1)先判断出OAB=DCA,进而判断出DAC=DAC,得出CD=AD=AB,即可得出结论;(1)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论【详解】解:(1)ABCD,OABDCA,AC为DAB的平分线,OABDAC,DCADAC,CDADAB,ABCD,四边形ABCD是平行四边形,ADAB,ABCD是菱形;(1)四边形ABCD是菱形,OAOC,BDAC,CEAB,OEOAOC,BD1,OBBD1,在RtAOB中,AB,OB1,OA1,OEOA1【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键21、(1)5;(2)2x【解析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可【详解】(1)原式 =5;(2)解不等式得,x2,解不等式得, 所以不等式组的解集是 用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定22、(1)证明见解析;(2)DE=CE,理由见解析;(3) 【解析】试题分析:(1)证明ABEACD,从而得出结论;(2) 先证明CDE=ACD,从而得出结论;(3)解直角三角形示得.试题解析:(1)ABE =ACD,A=A,ABEACD,;(2),又A=A,ADEACB,AED =ABC,AED =ACD+CDE,ABC=ABE+CBE,ACD+CDE=ABE+CBE,ABE =ACD,CDE=CBE,BE平分ABC,ABE=CBE,CDE=ABE=ACD,DE=CE;(3)CDAB,ADC=BDC=90°,A+ACD=CDE+ADE=90°,ABE =ACD,CDE=ACD,A=ADE,BEC=ABE+A=A+ACD=90°,AE=DE,BEAC,DE=CE,AE=DE=CE,AB=BC,AD=2,BD=3,BC=AB=AD+BD=5,在RtBDC中,在RtADC中,ADC=FEC=90°, 23、(1)C1,C3;(2)D(,0)或D(,3);(3)k 【解析】(1)直接利用线段AB的“等长点”的条件判断;(2)分两种情况讨论,利用对称性和垂直的性质即可求出m,n;(3)先判断出直线y=kx+3与圆A,B相切时,如图2所示,利用相似三角形的性质即可求出结论【详解】(1)A(0,3),B(,0),AB=2,点C1(2,3+2),AC1=2,AC1=AB,C1是线段AB的“等长点”,点C2(0,2),AC2=5,BC2=,AC2AB,BC2AB,C2不是线段AB的“等长点”,点C3(3+,),BC3=2,BC3=AB,C3是线段AB的“等长点”;故答案为C1,C3;(2)如图1,在RtAOB中,OA=3,OB=,AB=2,tanOAB=,OAB=30°,当点D在y轴左侧时,DAB=60°,DAO=DABBAO=30°,点D(m,n)是线段AB的“等长点”,AD=AB,D(,0),m=,n=0,当点D在y轴右侧时,DAB=60°,DAO=BAO+DAB=90°,n=3,点D(m,n)是线段AB的“等长点”,AD=AB=2,m=2;D(,3)(3)如图2,直线y=kx+3k=k(x+3),直线y=kx+3k恒过一点P(3,0),在RtAOP中,OA=3,OP=3,APO=30°,PAO=60°,BAP=90°,当PF与B相切时交y轴于F,PA切B于A,点F就是直线y=kx+3k与B的切点,F(0,3),3k=3,k=,当直线y=kx+3k与A相切时交y轴于G切点为E,AEG=OPG=90°,AEGPOG,=,解得:k=或k=(舍去)直线y=kx+3k上至少存在一个线段AB的“等长点”,k,【点睛】此题是一次函数综合题,主要考查了新定义,锐角三角函数,直角三角形的性质,等腰三角形的性质,对称性,解(1)的关键是理解新定义,解(2)的关键是画出图形,解(3)的关键是判断出直线和圆A,B相切时是分界点24、(1)当t=时,PQBC;(2)(t)2+,当t=时,y有最大值为;(3)存在,当t=时,四边形PQPC为菱形【解析】(1)只要证明APQABC,可得=,构建方程即可解决问题;(2)过点P作PDAC于D,则有APDABC,理由相似三角形的性质构建二次函数即可解决问题;(3)存在由APOABC,可得=,即=,推出OA=(5t),根据OC=CQ,构建方程即可解决问题;【详解】(1)在RtABC中,AB=10,BP=2t,AQ=t,则AP=102t,PQBC,APQABC,=,即=,解得t=,当t=时,PQBC(2)过点P作PDAC于D,则有APDABC,=,即=,PD=6t,y=t(6t)=(t)2+,当t=时,y有最大值为(3)存在理由:连接PP,交AC于点O四边形PQPC为菱形,OC=CQ,APOABC,=,即=,OA=(5t),8(5t)=(8t),解得t=,当t=时,四边形PQPC为菱形【点睛】本题考查四边形综合题、相似三角形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题