2023届江苏省南通中学中考一模数学试题含解析.doc
-
资源ID:87785373
资源大小:1.18MB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江苏省南通中学中考一模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1二次函数的图像如图所示,下列结论正确是( )ABCD有两个不相等的实数根2如图是正方体的表面展开图,则与“前”字相对的字是()A认B真C复D习3下列图案中,是轴对称图形但不是中心对称图形的是()ABCD4如图,将ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DEBC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是()ABCD5一个多边形的边数由原来的3增加到n时(n3,且n为正整数),它的外角和()A增加(n2)×180°B减小(n2)×180°C增加(n1)×180°D没有改变6完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A6(mn)B3(m+n)C4nD4m7如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A B C D8如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()ABCD95的倒数是AB5CD510若点A(2,),B(-3,),C(-1,)三点在抛物线的图象上,则、的大小关系是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知O1与O2相交于A、B两点,延长连心线O1O2交O2于点P,联结PA、PB,若APB=60°,AP=6,那么O2的半径等于_12如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_米13我国古代易经一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_个14小芸一家计划去某城市旅行,需要做自由行的攻略,父母给她分配了一项任务:借助网络评价选取该城市的一家餐厅用餐.小芸根据家人的喜好,选择了甲、乙、丙三家餐厅,对每家餐厅随机选取了1000条网络评价,统计如下:评价条数 等级餐厅五星四星三星二星一星合计甲53821096129271000乙460187154169301000丙4863888113321000(说明:网上对于餐厅的综合评价从高到低,依次为五星、四星、三星、二星和一星.)小芸选择在_(填"甲”、“乙"或“丙”)餐厅用餐,能获得良好用餐体验(即评价不低于四星)的可能性最大.15如图,在平面直角坐标系中,以点O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心大于MN的长为半径画弧,两弧在第二象限内交于点p(a,b),则a与b的数量关系是_16阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=1,那么(1+i)(1i)的平方根是_三、解答题(共8题,共72分)17(8分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?18(8分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点求的值;横、纵坐标都是整数的点叫做整点记图象在点,之间的部分与线段,围成的区域(不含边界)为当时,直接写出区域内的整点个数;若区域内恰有4个整点,结合函数图象,求的取值范围19(8分)如图,在四边形ABCD中,ABCD90°,CEAD于点E(1)求证:AECE;(2)若tanD3,求AB的长20(8分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:AGEBGF;(2)试判断四边形AFBE的形状,并说明理由21(8分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率22(10分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.546.5;B:46.553.5;C:53.560.5;D:60.567.5;E:67.574.5),并依据统计数据绘制了如下两幅尚不完整的统计图补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名23(12分)如图,BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CDBP交半圆P于另一点D,BEAO交射线PD于点E,EFAO于点F,连接BD,设AP=m(1)求证:BDP=90°(2)若m=4,求BE的长(3)在点P的整个运动过程中当AF=3CF时,求出所有符合条件的m的值当tanDBE=时,直接写出CDP与BDP面积比24如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】【分析】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0;由对称轴为x=1,可得2a+b=0;当x=-1时图象在x轴下方得到y=a-b+c0,结合b=-2a可得 3a+c0;观察图象可知抛物线的顶点为(1,3),可得方程有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a0;对称轴在y轴的右侧得到a、b异号,则b0;抛物线与y轴的交点在x轴的上方得到c0,所以abc0,故A选项错误;对称轴x=1,b=-2a,即2a+b=0,故B选项错误;当x=-1时, y=a-b+c0,又b=-2a, 3a+c0,故C选项正确;抛物线的顶点为(1,3),的解为x1=x2=1,即方程有两个相等的实数根,故D选项错误,故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a0)的图象,当a0,开口向上,函数有最小值,a0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c0,抛物线与y轴的交点在x轴的上方;当=b2-4ac0,抛物线与x轴有两个交点 2、B【解析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形.详解:由图形可知,与“前”字相对的字是“真”故选B点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.3、D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案详解:A是轴对称图形,也是中心对称图形,故此选项错误; B不是轴对称图形,也不是中心对称图形,故此选项错误; C不是轴对称图形,是中心对称图形,故此选项错误; D是轴对称图形,不是中心对称图形,故此选项正确 故选D点睛:本题考查了轴对称图形和中心对称图形的概念轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合; 中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合4、C【解析】利用相似三角形的性质即可判断【详解】设ADx,AEy,DEBC,ADEABC,x9,y12,故选:C【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、D【解析】根据多边形的外角和等于360°,与边数无关即可解答.【详解】多边形的外角和等于360°,与边数无关,一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变故选D【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.6、D【解析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m故选D7、A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.8、B【解析】解:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,使图中黑色部分的图形仍然构成一个轴对称图形的概率是:故选B9、C【解析】若两个数的乘积是1,我们就称这两个数互为倒数【详解】解:5的倒数是故选C10、C【解析】首先求出二次函数的图象的对称轴x=2,且由a=10,可知其开口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,所以总结可得故选C点睛:此题主要考查了二次函数的图像与性质,解答此题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数的图象性质二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】由题意得出ABP为等边三角形,在RtACO2中,AO2=即可.【详解】由题意易知:PO1AB,APB=60°ABP为等边三角形,AC=BC=3圆心角AO2O1=60° 在RtACO2中,AO2=2.故答案为2.【点睛】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.12、6.4【解析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.13、1【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1,故答案为:1点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力14、丙【解析】不低于四星,即四星与五星的和居多为符合题意的餐厅【详解】不低于四星,即比较四星和五星的和,丙最多故答案是:丙【点睛】考查了可能性的大小和统计表解题的关键是将问题转化为比较四星和五星的和的多少15、a+b=1【解析】试题分析:根据作图可知,OP为第二象限角平分线,所以P点的横纵坐标互为相反数,故a+b=1.考点:1角平分线;2平面直角坐标系.16、2【解析】根据平方根的定义进行计算即可【详解】解:i2=1,(1+i)(1i)=1i2=2,(1+i)(1i)的平方根是±,故答案为±【点睛】本题考查平方根以及实数的运算,解题关键掌握平方根的定义三、解答题(共8题,共72分)17、自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得,解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.18、(1)4;(2)3个(1,0),(2,0),(3,0)或【解析】分析:(1)根据点(4,1)在()的图象上,即可求出的值;(2)当时,根据整点的概念,直接写出区域内的整点个数即可.分当直线过(4,0)时,当直线过(5,0)时,当直线过(1,2)时,当直线过(1,3)时四种情况进行讨论即可.详解:(1)解:点(4,1)在()的图象上,(2) 3个(1,0),(2,0),(3,0) 当直线过(4,0)时:,解得当直线过(5,0)时:,解得当直线过(1,2)时:,解得当直线过(1,3)时:,解得综上所述:或点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.19、(1)见解析;(2)AB4【解析】(1)过点B作BFCE于F,根据同角的余角相等求出BCF=D,再利用“角角边”证明BCF和CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长【详解】(1)证明:过点B作BHCE于H,如图1CEAD,BHCCED90°,1D90°BCD90°,1290°,2D又BCCDBHCCED(AAS)BHCEBHCE,CEAD,A90°,四边形ABHE是矩形,AEBHAECE(2)四边形ABHE是矩形,ABHE在RtCED中,设DEx,CE3x,x2DE2,CE3CHDE2ABHE324【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键20、 (1)证明见解析(2)四边形AFBE是菱形【解析】试题分析:(1)由平行四边形的性质得出ADBC,得出AEG=BFG,由AAS证明AGEBGF即可;(2)由全等三角形的性质得出AE=BF,由ADBC,证出四边形AFBE是平行四边形,再根据EFAB,即可得出结论试题解析:(1)证明:四边形ABCD是平行四边形,ADBC,AEG=BFG,EF垂直平分AB,AG=BG,在AGEH和BGF中,AEG=BFG,AGE=BGF,AG=BG,AGEBGF(AAS);(2)解:四边形AFBE是菱形,理由如下:AGEBGF,AE=BF,ADBC,四边形AFBE是平行四边形,又EFAB,四边形AFBE是菱形考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型21、(1)(2)【解析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率【详解】解:(1)确定小亮打第一场,再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为【点睛】本题主要考查了列表法与树状图法;概率公式22、576名【解析】试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名试题解析:本次调查的学生有:32÷16%=200(名),体重在B组的学生有:20016484032=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800×=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名23、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或【解析】由知,再由知、,据此可得,证即可得;易知四边形ABEF是矩形,设,可得,证得,在中,由,列方程求解可得答案;分点C在AF的左侧和右侧两种情况求解:左侧时由知、,在中,由可得关于m的方程,解之可得;右侧时,由知、,利用勾股定理求解可得作于点G,延长GD交BE于点H,由知,据此可得,再分点D在矩形内部和外部的情况求解可得【详解】如图1,、,四边形ABEF是矩形,设,则,在中,即,解得:,的长为1如图1,当点C在AF的左侧时,则,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧时,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,又,且,当点D在矩形ABEF的内部时,由可设、,则,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,则,综上,与面积比为或【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点24、【解析】根据列表法先画出列表,再求概率.【详解】解:列表如下:23562(2,3)(2,5)(2,6)3(3,2)(3,5)(3,6)5(5,2)(5,3)(5,6)6(6,2)(6,3)(6,5)由表可知共有12种等可能结果,其中数字之和为偶数的有4种,所以P(数字之和都是偶数)【点睛】此题重点考查学生对概率的应用,掌握列表法是解题的关键.