2023届江苏省南京市南京航天大附属初级中学中考数学模拟预测题含解析.doc
-
资源ID:87785554
资源大小:757KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届江苏省南京市南京航天大附属初级中学中考数学模拟预测题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,直线ab,直线c与直线a、b分别交于点A、点B,ACAB于点A,交直线b于点C如果1=34°,那么2的度数为( )A34°B56°C66°D146°2如图,点A是反比例函数y=的图象上的一点,过点A作ABx轴,垂足为B点C为y轴上的一点,连接AC,BC若ABC的面积为3,则k的值是( )A3B3C6D63已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是( )A取时的函数值小于0B取时的函数值大于0C取时的函数值等于0D取时函数值与0的大小关系不确定4如图,ABC中,D、E分别为AB、AC的中点,已知ADE的面积为1,那么ABC的面积是()A2B3C4D55如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(,4),则AOC的面积为A12B9C6D46如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设CAB,那么拉线BC的长度为()ABCD7已知关于x的一元二次方程mx22x1=0有两个不相等的实数根,则m的取值范围是( ).Am1且m0Bm1且m0Cm1Dm18在平面直角坐标系中,有两条抛物线关于x轴对称,且他们的顶点相距10个单位长度,若其中一条抛物线的函数表达式为y=+6x+m,则m的值是 ( )A-4或-14B-4或14C4或-14D4或149如图,在ABC中,AB=AC=5,BC=6,点M为BC的中点,MNAC于点N,则MN等于()A B C D10下列事件中,必然事件是()A若ab=0,则a=0 B若|a|=4,则a=±4C一个多边形的内角和为1000°D若两直线被第三条直线所截,则同位角相等二、填空题(共7小题,每小题3分,满分21分)11若,则= 12如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AEBD,垂足为点E,若EAC=2CAD,则BAE=_度 13如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,如此继续下去,结果如下表:则an_(用含n的代数式表示)所剪次数1234n正三角形个数471013an14如图所示,直线y=x+1(记为l1)与直线y=mx+n(记为l2)相交于点P(a,2),则关于x的不等式x+1mx+n的解集为_.15在平面直角坐标系中,点A,B的坐标分别为(m,7),(3m1,7),若线段AB与直线y2x1相交,则m的取值范围为_16如图,ABC是直角三角形,C=90°,四边形ABDE是菱形且C、B、D共线,AD、BE交于点O,连接OC,若BC=3,AC=4,则tanOCB=_17在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,1则这位选手五次射击环数的方差为 三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,C90°,CAB50°,按以下步骤作图:以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;作射线AG,交BC边于点D则ADC的度数为( )A40°B55°C65°D75°19(5分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM判断四边形AEMF是什么特殊四边形?并证明你的结论20(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元超市规定每盒售价不得少于45元根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?21(10分)解方程(1);(2)22(10分)已知,在平面直角坐标系xOy中,抛物线L:y=x2-4x+3与x轴交于A,B两点(点A在点B的左侧),顶点为C(1)求点C和点A的坐标(2)定义“L双抛图形”:直线x=t将抛物线L分成两部分,首先去掉其不含顶点的部分,然后作出抛物线剩余部分关于直线x=t的对称图形,得到的整个图形称为抛物线L关于直线x=t的“L双抛图形”(特别地,当直线x=t恰好是抛物线的对称轴时,得到的“L双抛图形”不变),当t=0时,抛物线L关于直找x=0的“L双抛图形”如图所示,直线y=3与“L双抛图形”有_个交点;若抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,结合图象,直接写出t的取值范围:_;当直线x=t经过点A时,“L双抛图形”如图所示,现将线段AC所在直线沿水平(x轴)方向左右平移,交“L双抛图形”于点P,交x轴于点Q,满足PQ=AC时,求点P的坐标23(12分)如图,顶点为C的抛物线y=ax2+bx(a0)经过点A和x轴正半轴上的点B,连接OC、OA、AB,已知OA=OB=2,AOB=120°(1)求这条抛物线的表达式;(2)过点C作CEOB,垂足为E,点P为y轴上的动点,若以O、C、P为顶点的三角形与AOE相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE,旋转角为(0°120°),连接EA、EB,求EA+EB的最小值24(14分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM(参考数据:sin15°=,cos15°=,tan15°=2)(1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;(2)在点E、F运动过程中,判断AE与AM的数量关系,并说明理由;AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;(3)如图2,连接NF,在点E、F运动过程中,ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】分析:先根据平行线的性质得出2+BAD=180°,再根据垂直的定义求出2的度数详解:直线ab,2+BAD=180° ACAB于点A,1=34°,2=180°90°34°=56° 故选B点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大2、D【解析】试题分析:连结OA,如图,ABx轴,OCAB,SOAB=SCAB=3,而SOAB=|k|,|k|=3,k0,k=1故选D考点:反比例函数系数k的几何意义3、B【解析】画出函数图象,利用图象法解决问题即可;【详解】由题意,函数的图象为:抛物线的对称轴x=,设抛物线与x轴交于点A、B,AB1,x取m时,其相应的函数值小于0,观察图象可知,x=m-1在点A的左侧,x=m-1时,y0,故选B【点睛】本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想4、C【解析】根据三角形的中位线定理可得DEBC,即可证得ADEABC,根据相似三角形面积的比等于相似比的平方可得,已知ADE的面积为1,即可求得SABC1【详解】D、E分别是AB、AC的中点,DE是ABC的中位线,DEBC,ADEABC,()2,ADE的面积为1,SABC1故选C【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,先证得ADEABC,根据相似三角形面积的比等于相似比的平方得到是解决问题的关键.5、B【解析】点,是中点点坐标在双曲线上,代入可得点在直角边上,而直线边与轴垂直点的横坐标为-6又点在双曲线点坐标为从而,故选B6、B【解析】根据垂直的定义和同角的余角相等,可由CAD+ACD=90°,ACD+BCD=90°,可求得CAD=BCD,然后在RtBCD中 cosBCD=,可得BC=.故选B点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键7、A【解析】一元二次方程mx22x1=0有两个不相等的实数根,m0,且224×m×(1)0,解得:m1且m0.故选A.【点睛】本题考查一元二次方程ax2+bx+c=0(a0)根的判别式:(1)当=b24ac0时,方程有两个不相等的实数根;(2)当=b24ac=0时,方程有有两个相等的实数根;(3)当=b24ac0时,方程没有实数根.8、D【解析】根据顶点公式求得已知抛物线的顶点坐标,然后根据轴对称的性质求得另一条抛物线的顶点,根据题意得出关于m的方程,解方程即可求得【详解】一条抛物线的函数表达式为y=x2+6x+m,这条抛物线的顶点为(-3,m-9),关于x轴对称的抛物线的顶点(-3,9-m),它们的顶点相距10个单位长度|m-9-(9-m)|=10,2m-18=±10,当2m-18=10时,m=1,当2m-18=-10时,m=4,m的值是4或1故选D【点睛】本题考查了二次函数图象与几何变换,解答本题的关键是掌握二次函数的顶点坐标公式,坐标和线段长度之间的转换,关于x轴对称的点和抛物线的关系9、A【解析】连接AM,根据等腰三角形三线合一的性质得到AMBC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长【详解】解:连接AM,AB=AC,点M为BC中点,AMCM(三线合一),BM=CM,AB=AC=5,BC=6,BM=CM=3,在RtABM中,AB=5,BM=3,根据勾股定理得:AM= = =4,又SAMC=MNAC=AMMC,MN= = 故选A【点睛】综合运用等腰三角形的三线合一,勾股定理特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边10、B【解析】直接利用绝对值的性质以及多边形的性质和平行线的性质分别分析得出答案【详解】解:A、若ab=0,则a=0,是随机事件,故此选项错误;B、若|a|=4,则a=±4,是必然事件,故此选项正确;C、一个多边形的内角和为1000°,是不可能事件,故此选项错误;D、若两直线被第三条直线所截,则同位角相等,是随机事件,故此选项错误;故选:B【点睛】此题主要考查了事件的判别,正确把握各命题的正确性是解题关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:有意义,必须,解得:x=3,代入得:y=0+0+2=2,=1故答案为1考点:二次根式有意义的条件12、22.5°【解析】四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OBOC,OAD=ODA,OAB=OBA,AOE=OAD+ODA=2OAD,EAC=2CAD,EAO=AOE,AEBD,AEO=90°,AOE=45°,OAB=OBA=67.5°,即BAE=OABOAE=22.5°考点:矩形的性质;等腰三角形的性质13、3n+1【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形即剪n次时,共有4+3(n-1)=3n+1试题解析:故剪n次时,共有4+3(n-1)=3n+1考点:规律型:图形的变化类14、x1【解析】把y=2代入y=x+1,得x=1,点P的坐标为(1,2),根据图象可以知道当x1时,y=x+1的函数值不小于y=mx+n相应的函数值,因而不等式x+1mx+n的解集是:x1,故答案为x1【点睛】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合15、4m1【解析】先求出直线y7与直线y2x1的交点为(4,7),再分类讨论:当点B在点A的右侧,则m43m1,当点B在点A的左侧,则3m14m,然后分别解关于m的不等式组即可【详解】解:当y7时,2x17,解得x4,所以直线y7与直线y2x1的交点为(4,7),当点B在点A的右侧,则m43m1,无解;当点B在点A的左侧,则3m14m,解得4m1,所以m的取值范围为4m1,故答案为4m1【点睛】本题考查了一次函数图象上点的坐标特征,根据直线y2x1与线段AB有公共点找出关于m的一元一次不等式组是解题的关键16、【解析】利用勾股定理求出AB,再证明OC=OA=OD,推出OCB=ODC,可得tanOCB=tanODC=,由此即可解决问题.【详解】在RtABC中,AC=4,BC=3,ACB=90°,AB=5,四边形ABDE是菱形,AB=BD=5,OA=OD,OC=OA=OD,OCB=ODC,tanOCB=tanODC=,故答案为【点睛】本题考查菱形的性质、勾股定理、直角三角形斜边中线的性质、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型17、2.【解析】试题分析:五次射击的平均成绩为=(5+7+8+6+1)=7,方差S2=(57)2+(87)2+(77)2+(67)2+(17)2=2考点:方差三、解答题(共7小题,满分69分)18、C【解析】试题分析:由作图方法可得AG是CAB的角平分线,CAB=50°,CAD=CAB=25°,C=90°,CDA=90°25°=65°,故选C考点:作图基本作图19、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.【解析】(1)求简单的线段相等,可证线段所在的三角形全等,即证ABEADF;(2)由于四边形ABCD是正方形,易得ECO=FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形【详解】(1)证明:四边形ABCD是正方形,AB=AD,B=D=90°,在RtABE和RtADF中,RtADFRtABE(HL)BE=DF;(2)四边形AEMF是菱形,理由为:证明:四边形ABCD是正方形,BCA=DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),BE=DF(已证),BC-BE=DC-DF(等式的性质),即CE=CF,在COE和COF中,COECOF(SAS),OE=OF,又OM=OA,四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),AE=AF,平行四边形AEMF是菱形20、(1)y=20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)超市每天至少销售粽子440盒【解析】试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解试题解析:(1)由题意得,=;(2)P=,x45,a=200,当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得=6000,解得,抛物线P=的开口向下,当50x70时,每天销售粽子的利润不低于6000元的利润,又x58,50x58,在中,0,y随x的增大而减小,当x=58时,y最小值=20×58+1600=440,即超市每天至少销售粽子440盒考点:二次函数的应用21、(1),;(2),【解析】(1)利用公式法求解可得;(2)利用因式分解法求解可得【详解】(1)解:,;(2)解:原方程化为:,因式分解得:,整理得:,或,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键22、(1)C(2,-1),A(1,0);(2)3,0t1,(+2,1)或(-+2,1)或(-1,0)【解析】(1)令y=0得:x2-1x+3=0,然后求得方程的解,从而可得到A、B的坐标,然后再求得抛物线的对称轴为x=2,最后将x=2代入可求得点C的纵坐标;(2)抛物线与y轴交点坐标为(0,3),然后做出直线y=3,然后找出交点个数即可;将y=3代入抛物线的解析式求得对应的x的值,从而可得到直线y=3与“L双抛图形”恰好有3个交点时t的取值,然后结合函数图象可得到“L双抛图形”与直线y=3恰好有两个交点时t的取值范围;首先证明四边形ACQP为平行四边形,由可得到点P的纵坐标为1,然后由函数解析式可求得点P的横坐标【详解】(1)令y=0得:x2-1x+3=0,解得:x=1或x=3,A(1,0),B(3,0),抛物线的对称轴为x=2,将x=2代入抛物线的解析式得:y=-1,C(2,-1);(2)将x=0代入抛物线的解析式得:y=3,抛物线与y轴交点坐标为(0,3),如图所示:作直线y=3,由图象可知:直线y=3与“L双抛图形”有3个交点,故答案为3;将y=3代入得:x2-1x+3=3,解得:x=0或x=1,由函数图象可知:当0t1时,抛物线L关于直线x=t的“L双抛图形”与直线y=3恰好有两个交点,故答案为0t1如图2所示:PQAC且PQ=AC,四边形ACQP为平行四边形,又点C的纵坐标为-1,点P的纵坐标为1,将y=1代入抛物线的解析式得:x2-1x+3=1,解得:x=+2或x=-+2点P的坐标为(+2,1)或(-+2,1),当点P(-1,0)时,也满足条件综上所述,满足条件的点(+2,1)或(-+2,1)或(-1,0)【点睛】本题主要考查的是二次函数的综合应用,解答本题需要同学们理解“L双抛图形”的定义,数形结合以及方程思想的应用是解题的关键23、 (1) y=x2x;(2)点P坐标为(0,)或(0,);(3).【解析】(1)根据AO=OB=2,AOB=120°,求出A点坐标,以及B点坐标,进而利用待定系数法求二次函数解析式;(2)EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP=2OC时,POC与AOE相似;(3)如图,取Q(,0)连接AQ,QE由OEQOBE,推出,推出EQ=BE,推出AE+BE=AE+QE,由AE+EQAQ,推出EA+EB的最小值就是线段AQ的长.【详解】(1)过点A作AHx轴于点H,AO=OB=2,AOB=120°,AOH=60°,OH=1,AH=,A点坐标为:(-1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,抛物线的表达式为:y=x2-x;(2)如图,C(1,-),tanEOC=,EOC=30°,POC=90°+30°=120°,AOE=120°,AOE=POC=120°,OA=2OE,OC=,当OP=OC或OP=2OC时,POC与AOE相似,OP=,OP=,点P坐标为(0,)或(0,)(3)如图,取Q(,0)连接AQ,QE ,QOE=BOE,OEQOBE,EQ=BE,AE+BE=AE+QE,AE+EQAQ,EA+EB的最小值就是线段AQ的长,最小值为【点睛】本题考查二次函数综合题、解直角三角形、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会由分类讨论的思想思考问题,学会构造相似三角形解决最短问题,属于中考压轴题24、(1)EFBD,见解析;(2)AE=AM,理由见解析;AEM能为等边三角形,理由见解析;(3)ANF的面积不变,理由见解析【解析】(1)依据DE=BF,DEBF,可得到四边形DBFE是平行四边形,进而得出EFDB;(2)依据已知条件判定ADEABM,即可得到AE=AM;若AEM是等边三角形,则EAM=60°,依据ADEABM,可得DAE=BAM=15°,即可得到DE=16-8,即当DE=168时,AEM是等边三角形;(3)设DE=x,过点N作NPAB,反向延长PN交CD于点Q,则NQCD,依据DENBNA,即可得出PN=,根据SANF=AF×PN=×(x+8)×=32,可得ANF的面积不变【详解】解:(1)EFBD证明:动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,DE=BF,又DEBF,四边形DBFE是平行四边形,EFDB;(2)AE=AMEFBD,F=ABD=45°,MB=BF=DE,正方形ABCD,ADC=ABC=90°,AB=AD,ADEABM,AE=AM;AEM能为等边三角形若AEM是等边三角形,则EAM=60°,ADEABM,DAE=BAM=15°,tanDAE=,AD=8,2=,DE=168,即当DE=168时,AEM是等边三角形;(3)ANF的面积不变设DE=x,过点N作NPAB,反向延长PN交CD于点Q,则NQCD,CDAB,DENBNA,=,PN=,SANF=AF×PN=×(x+8)×=32,即ANF的面积不变【点睛】本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论