2023届安徽省桐城市第二中学重点名校中考联考数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一组数据是4,x,5,10,11共五个数,其平均数为7,则这组数据的众数是()A4B5C10D112如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A3B4C5D63抢微信红包成为节日期间人们最喜欢的活动之一对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位数分别是()A20,20B30,20C30,30D20,304反比例函数y的图象如图所示,以下结论:常数m1;在每个象限内,y随x的增大而增大;若点A(1,h),B(2,k)在图象上,则hk;若点P(x,y)在上,则点P(x,y)也在图象其中正确结论的个数是( )A1B2C3D45舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A4.995×1011B49.95×1010C0.4995×1011D4.995×10106如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()ABCD7一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是()A13B14C15D168我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻将423公里用科学记数法表示应为()米A42.3×104B4.23×102C4.23×105D4.23×1069如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是()ABCD10如图,二次函数yax2bxc(a0)的图象经过点A,B,C现有下面四个推断:抛物线开口向下;当x=2时,y取最大值;当m<4时,关于x的一元二次方程ax2bxc=m必有两个不相等的实数根;直线y=kx+c(k0)经过点A,C,当kx+c> ax2bxc时,x的取值范围是4<x<0;其中推断正确的是 ( )ABCD11在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a0)的大致图象如图所示,则下列结论正确的是()Aa0,b0,c0B=1Ca+b+c0D关于x的方程ax2+bx+c=1有两个不相等的实数根12如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,若2=40°,则图中1的度数为( )A115°B120°C130°D140°二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,的半径为1,正六边形内接于,则图中阴影部分图形的面积和为_(结果保留)14一机器人以0.2m/s的速度在平地上按下图中的步骤行走,那么该机器人从开始到停止所需时间为_s15图是一个三角形,分别连接这个三角形的中点得到图;再分别连接图中间小三角形三边的中点,得到图按上面的方法继续下去,第n个图形中有_个三角形(用含字母n的代数式表示)16如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB6cm,BC8cm,则EF_cm17如图,五边形是正五边形,若,则_18如图,在ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cosC=,那么GE=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,APB=CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使APB=CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状(不必证明)20(6分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD96m,其中点A、D、C在同一直线上求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°274,cos48°267,tan48°222,27321(6分)某市飞翔航模小队,计划购进一批无人机已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍设购进A型无人机x台,总费用为y元求y与x的关系式;购进A型、B型无人机各多少台,才能使总费用最少?22(8分)如图,在ABC中,AB=AC,ABC=72°(1)用直尺和圆规作ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出ABC的平分线BD后,求BDC的度数23(8分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k0)的图象交于A(1,a),B(3,b)两点求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求PAB的面积24(10分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根据上表中的数据,将下表补充完整:统计值数值人员平均数(万元)众数(万元)中位数(万元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.25(10分)解不等式组:,并把解集在数轴上表示出来26(12分)如图,抛物线经过点A(2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果PBO=BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DEx轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.27(12分)(1)计算:|3|+(2 018)02sin 30°+()1(2)先化简,再求值:(x1)÷(1),其中x为方程x2+3x+2=0的根参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题分析:(4+x+3+30+33)÷3=7,解得:x=3,根据众数的定义可得这组数据的众数是3故选B考点:3众数;3算术平均数2、D【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1【详解】点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S1+S1=4+4-1×1=2故选D3、C【解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握4、B【解析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可【详解】解:反比例函数的图象位于一三象限,m0故错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故错误;将A(1,h),B(2,k)代入y,得到hm,2km,m0hk故正确;将P(x,y)代入y得到mxy,将P(x,y)代入y得到mxy,故P(x,y)在图象上,则P(x,y)也在图象上故正确,故选:B【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键5、D【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【详解】将499.5亿用科学记数法表示为:4.995×1故选D【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值6、D【解析】连接OC,过点A作ADCD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知AOC是等边三角形,可得AOC=BOC=60°,故ACO与BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OAsin60°=2×=,因此可求得S阴影=S扇形AOB2SAOC=2××2×=2故选D点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键7、C【解析】解:如图所示,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、I因为六边形ABCDEF的六个角都是120°,所以六边形ABCDEF的每一个外角的度数都是60°所以都是等边三角形所以 所以六边形的周长为3+1+4+2+2+3=15;故选C8、C【解析】423公里=423 000米=4.23×105米故选C9、C【解析】根据左视图是从物体的左面看得到的视图解答即可【详解】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的长方形,故选C【点睛】本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图10、B【解析】结合函数图象,利用二次函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案【详解】解:由图象可知,抛物线开口向下,所以正确; 若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以错误,从而排除掉A和D; 剩下的选项中都有,所以是正确的; 易知直线y=kx+c(k0)经过点A,C,当kx+cax2+bx+c时,x的取值范围是x-4或x0,从而错误故选:B【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题11、D【解析】试题分析:根据图像可得:a0,b0,c0,则A错误;,则B错误;当x=1时,y=0,即a+b+c=0,则C错误;当y=1时有两个交点,即有两个不相等的实数根,则正确,故选D12、A【解析】解:把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,BFE=EFB',B'=B=90°2=40°,CFB'=50°,1+EFB'CFB'=180°,即1+150°=180°,解得:1=115°,故选A二、填空题:(本大题共6个小题,每小题4分,共24分)13、.【解析】连接OA,OB,OC,则根据正六边形内接于可知阴影部分的面积等于扇形OAB的面积,计算出扇形OAB的面积即可.【详解】解:如图所示,连接OA,OB,OC,正六边形内接于AOB=60°,四边形OABC是菱形, AG=GC,OG=BG,AGO=BGCAGOBGC.AGO的面积=BGC的面积弓形DE的面积=弓形AB的面积阴影部分的面积=弓形DE的面积+ABC的面积=弓形AB的面积+AGB的面积+BGC的面积=弓形AB的面积+AGB的面积+AGO的面积=扇形OAB的面积= = 故答案为.【点睛】本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.14、240【解析】根据图示,得出机器人的行走路线是沿着一个正八边形的边长行走一周,是解决本题的关键,考察了计算多边形的周长,本题中由于机器人最后必须回到起点,可知此机器人一共转了360°,我们可以计算机器人所转的回数,即360°÷45°=8,则机器人的行走路线是沿着一个正八边形的边长行走一周,故机器人一共行走6×8=48m,根据时间=路程÷速度,即可得出结果.本题解析: 依据题中的图形,可知机器人一共转了360°,360°÷45°=8,机器人一共行走6×8=48m该机器人从开始到停止所需时间为48÷0.2=240s15、4n1【解析】分别数出图、图、图中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去如图中三角形的个数为按照这个规律即可求出第n各图形中有多少三角形【详解】分别数出图、图、图中的三角形的个数,图中三角形的个数为;图中三角形的个数为;图中三角形的个数为;可以发现,第几个图形中三角形的个数就是4与几的乘积减去1按照这个规律,如果设图形的个数为n,那么其中三角形的个数为故答案为【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题16、2.1【解析】根据勾股定理求出AC,根据矩形性质得出ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可【详解】四边形ABCD是矩形,ABC=90°,BD=AC,BO=OD,AB=6cm,BC=8cm,由勾股定理得:BD=AC=10(cm),DO=1cm,点E、F分别是AO、AD的中点,EF=OD=2.1cm,故答案为2.1【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.17、72【解析】分析:延长AB交于点F,根据得到2=3,根据五边形是正五边形得到FBC=72°,最后根据三角形的外角等于与它不相邻的两个内角的和即可求出.详解:延长AB交于点F,2=3,五边形是正五边形,ABC=108°,FBC=72°,1-2=1-3=FBC=72°故答案为:72°.点睛:此题主要考查了平行线的性质和正五边形的性质,正确把握五边形的性质是解题关键.18、【解析】过点E作EFBC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合BGDBEF即可.【详解】过点E作EFBC交BC于点F.AB=AC, AD为BC的中线 ADBC EF为ADC的中位线.又cosC=,AB=AC=5,AD=3,BD=CD=4,EF=,DF=2BF=6在RtBEF中BE=,又BGDBEF,即BG=.GE=BE-BG=故答案为.【点睛】本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EHFG,EH=FG即可(2)四边形EFGH是菱形先证明APCBPD,得到AC=BD,再证明EF=FG即可(3)四边形EFGH是正方形,只要证明EHG=90°,利用APCBPD,得ACP=BDP,即可证明COD=CPD=90°,再根据平行线的性质即可证明【详解】(1)证明:如图1中,连接BD点E,H分别为边AB,DA的中点,EHBD,EH=BD,点F,G分别为边BC,CD的中点,FGBD,FG=BD,EHFG,EH=GF,中点四边形EFGH是平行四边形(2)四边形EFGH是菱形证明:如图2中,连接AC,BDAPB=CPD,APB+APD=CPD+APD,即APC=BPD,在APC和BPD中,AP=PB,APC=BPD,PC=PD,APCBPD,AC=BD点E,F,G分别为边AB,BC,CD的中点,EF=AC,FG=BD,四边形EFGH是平行四边形,四边形EFGH是菱形(3)四边形EFGH是正方形证明:如图2中,设AC与BD交于点OAC与PD交于点M,AC与EH交于点NAPCBPD,ACP=BDP,DMO=CMP,COD=CPD=90°,EHBD,ACHG,EHG=ENO=BOC=DOC=90°,四边形EFGH是菱形,四边形EFGH是正方形考点:平行四边形的判定与性质;中点四边形20、AD的长约为225m,大楼AB的高约为226m【解析】首先设大楼AB的高度为xm,在RtABC中利用正切函数的定义可求得 ,然后根据ADB的正切表示出AD的长,又由CD=96m,可得方程 ,解此方程即可求得答案【详解】解:设大楼AB的高度为xm,在RtABC中,C=32°,BAC=92°, ,在RtABD中, ,CD=AC-AD,CD=96m, ,解得:x226,答:大楼AB的高度约为226m,AD的长约为225m【点睛】本题考查解直角三角形的应用要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用21、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;(2)y200x+50000;购进A型、B型无人机各16台、34台时,才能使总费用最少【解析】(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到y与x的函数关系式;根据中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少【详解】解:(1)设一台型无人机售价元,一台型无人机的售价元, ,解得,答:一台型无人机售价元,一台型无人机的售价元;(2)由题意可得,即y与x的函数关系式为;B型无人机的数量不少于A型无人机的数量的2倍,解得,当时,y取得最小值,此时,答:购进型、型无人机各台、台时,才能使总费用最少【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答22、(1)作图见解析(2)BDC=72°【解析】解:(1)作图如下:(2)在ABC中,AB=AC,ABC=72°,A=180°2ABC=180°144°=36°AD是ABC的平分线,ABD=ABC=×72°=36°BDC是ABD的外角,BDC=A+ABD=36°+36°=72°(1)根据角平分线的作法利用直尺和圆规作出ABC的平分线:以点B为圆心,任意长为半径画弧,分别交AB、BC于点E、F;分别以点E、F为圆心,大于EF为半径画圆,两圆相较于点G,连接BG交AC于点D(2)先根据等腰三角形的性质及三角形内角和定理求出A的度数,再由角平分线的性质得出ABD的度数,再根据三角形外角的性质得出BDC的度数即可23、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)SPAB= 1.1 【解析】(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由SPAB=SABDSPBD即可求出PAB的面积.解:(1)把点A(1,a)代入一次函数y=x+4,得a=1+4, 解得a=3, A(1,3), 点A(1,3)代入反比例函数y=, 得k=3, 反比例函数的表达式y=, (2)把B(3,b)代入y=得,b=1点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小, D(3,1),设直线AD的解析式为y=mx+n, 把A,D两点代入得, 解得m=2,n=1, 直线AD的解析式为y=2x+1, 令y=0,得x=, 点P坐标(,0),(3)SPAB=SABDSPBD=×2×2×2×=2=1.1 点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.24、(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.【解析】(1)利用平均数、众数、中位数的定义和方差的计算公式求解;(2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.【详解】(1)甲的平均数;乙的众数为9;丙的中位数为9,丙的方差;故答案为8.2;9;9;6.4;(2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.25、无解.【解析】试题分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集试题解析:由得x4,由得x1,原不等式组无解,考点:解一元一次不等式;在数轴上表示不等式的解集26、(1);(2)P(1,); (3)3或5.【解析】(1)将点A、B代入抛物线,用待定系数法求出解析式.(2)对称轴为直线x=1,过点P作PGy轴,垂足为G, 由PBO=BAO,得tanPBO=tanBAO,即,可求出P的坐标.(3)新抛物线的表达式为,由题意可得DE=2,过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.【详解】解:(1)抛物线经过点A(2,0),点B(0,4),解得,抛物线解析式为,(2),对称轴为直线x=1,过点P作PGy轴,垂足为G,PBO=BAO,tanPBO=tanBAO,,,,,P(1,),(3)设新抛物线的表达式为则,,DE=2过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.点D在y轴的正半轴上,则,,,m=3,点D在y轴的负半轴上,则,,,m=5,综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.27、(1)6;(2)(x+1),1.【解析】(1)原式=3+12×+3=6(2)由题意可知:x2+3x+2=0,解得:x=1或x=2原式=(x1)÷=(x+1)当x=1时,x+1=0,分式无意义,当x=2时,原式=1