2023届四川省成都市高新区重点名校中考一模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是() 动时间(小时)33.544.5人数1121A中位数是4,平均数是3.75B众数是4,平均数是3.75C中位数是4,平均数是3.8D众数是2,平均数是3.82如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于( )A111B123C234D3453若a+|a|=0,则等于()A22aB2a2C2D24在ABC中,若=0,则C的度数是( )A45°B60°C75°D105°5如图,在ABC中,C=90°,B=30°,AD是ABC的角平分线,DEAB,垂足为点E,DE=1,则BC= ()AB2C3D+26下列计算正确的是()A2x2y32x3y4x6y3B(2a2)36a6C(2a+1)(2a1)2a21D35x3y2÷5x2y7xy7关于的一元二次方程有两个不相等的实数根,则实数的取值范围是ABCD8下列代数运算正确的是()A(x+1)2=x2+1B(x3)2=x5C(2x)2=2x2Dx3x2=x59下列方程中,是一元二次方程的是()A2xy=3Bx2+=2Cx2+1=x21Dx(x1)=010下列各数中,无理数是()A0BCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,ABC中,AB6,AC4,AD、AE分别是其角平分线和中线,过点C作CGAD于F,交AB于G,连接EF,则线段EF的长为_12如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是_13如图,在RtABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则DCE的大小等于_度.14在函数y中,自变量x的取值范围是_15分解因式:_16菱形的两条对角线长分别是方程的两实根,则菱形的面积为_三、解答题(共8题,共72分)17(8分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高(=1.73,结果保留一位小数)18(8分)图 1 和图 2 中,优弧纸片所在O 的半径为 2,AB2 ,点 P为优弧上一点(点 P 不与 A,B 重合),将图形沿 BP 折叠,得到点 A 的对称点 A发现:(1)点 O 到弦 AB 的距离是 ,当 BP 经过点 O 时,ABA ;(2)当 BA与O 相切时,如图 2,求折痕的长拓展:把上图中的优弧纸片沿直径 MN 剪裁,得到半圆形纸片,点 P(不与点 M, N 重合)为半圆上一点,将圆形沿 NP 折叠,分别得到点 M,O 的对称点 A, O,设MNP(1)当15°时,过点 A作 ACMN,如图 3,判断 AC 与半圆 O 的位置关系,并说明理由;(2)如图 4,当 °时,NA与半圆 O 相切,当 °时,点 O落在上 (3)当线段 NO与半圆 O 只有一个公共点 N 时,直接写出的取值范围19(8分)如图,在平面直角坐标系中,已知ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3)(1)将ABC向下平移5个单位后得到A1B1C1,请画出A1B1C1;(2)将ABC绕原点O逆时针旋转90°后得到A2B2C2,请画出A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状(无须说明理由)20(8分)如图,AB是O的直径,连结AC,过点C作直线lAB,点P是直线l上的一个动点,直线PA与O交于另一点D,连结CD,设直线PB与直线AC交于点E求BAC的度数;当点D在AB上方,且CDBP时,求证:PCAC;在点P的运动过程中当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的ACD的度数;设O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出BDE的面积21(8分)(1)计算:(2)2+cos60°(2)0;(2)化简:(a)÷ 22(10分)如图,AC是O的直径,点P在线段AC的延长线上,且PC=CO,点B在O上,且CAB=30°(1)求证:PB是O的切线;(2)若D为圆O上任一动点,O的半径为5cm时,当弧CD长为 时,四边形ADPB为菱形,当弧CD长为 时,四边形ADCB为矩形23(12分)如图,AM是ABC的中线,D是线段AM上一点(不与点A重合)DEAB交AC于点F,CEAM,连结AE(1)如图1,当点D与M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与M重合时,(1)中的结论还成立吗?请说明理由(3)如图3,延长BD交AC于点H,若BHAC,且BH=AM求CAM的度数;当FH=,DM=4时,求DH的长24为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85100;第二组100115;第三组115130;第四组130145;第五组145160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;(2)若将得分转化为等级,规定:得分低于100分评为“D”,100130分评为“C”,130145分评为“B”,145160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】试题解析:这组数据中4出现的次数最多,众数为4,共有5个人,第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.1故选C2、C【解析】作OFAB于F,OEAC于E,ODBC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可【详解】作OFAB于F,OEAC于E,ODBC于D,三条角平分线交于点O,OFAB,OEAC,ODBC,OD=OE=OF,SABO:SBCO:SCAO=AB:BC:CA=20:30:402:3:4,故选C【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键3、A【解析】直接利用二次根式的性质化简得出答案【详解】a+|a|=0,|a|=-a,则a0,故原式=2-a-a=2-2a故选A【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键4、C【解析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出C的度数【详解】由题意,得 cosA=,tanB=1,A=60°,B=45°,C=180°-A-B=180°-60°-45°=75°故选C5、C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据RtADE可得AD=2DE=2,根据题意可得ADB为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1考点:角平分线的性质和中垂线的性质6、D【解析】A根据同底数幂乘法法则判断;B根据积的乘方法则判断即可;C根据平方差公式计算并判断;D根据同底数幂除法法则判断【详解】A.-2x-2y3×2x3y=-4xy4,故本选项错误;B. (2a2)3=8a6,故本项错误;C. (2a+1)(2a1)=4a21,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.7、A【解析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可【详解】关于x的一元二次方程x23x+m=0有两个不相等的实数根,=b24ac=(3)24×1×m0,m,故选A【点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式的关系,即:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根8、D【解析】分别根据同底数幂的乘法、幂的乘方与积的乘方、完全平方公式进行逐一计算即可【详解】解:A. (x+1)2=x2+2x+1,故A错误;B. (x3)2=x6,故B错误;C. (2x)2=4x2,故C错误.D. x3x2=x5,故D正确.故本题选D.【点睛】本题考查的是同底数幂的乘法、幂的乘方与积的乘方、完全平方公式,熟练掌握他们的定义是解题的关键.9、D【解析】试题解析:含有两个未知数,不是整式方程,C没有二次项.故选D.点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.10、D【解析】利用无理数定义判断即可.【详解】解:是无理数,故选:D.【点睛】此题考查了无理数,弄清无理数的定义是解本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】在AGF和ACF中,AGFACF,AG=AC=4,GF=CF,则BG=ABAG=64=2.又BE=CE,EF是BCG的中位线,EF=BG=1.故答案是:1.12、【解析】先求出黑色方砖在整个地面中所占的比值,再根据其比值即可得出结论【详解】解:由图可知,黑色方砖4块,共有16块方砖,黑色方砖在整个区域中所占的比值它停在黑色区域的概率是;故答案为【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=13、45【解析】试题解析:设DCE=x,ACD=y,则ACE=x+y,BCE=90°-ACE=90°-x-yAE=AC,ACE=AEC=x+y,BD=BC,BDC=BCD=BCE+DCE=90°-x-y+x=90°-y在DCE中,DCE+CDE+DEC=180°,x+(90°-y)+(x+y)=180°,解得x=45°,DCE=45°考点:1.等腰三角形的性质;2.三角形内角和定理.14、x4【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义由题意得,考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成.15、【解析】=2()=.故答案为.16、2【解析】解:x214x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1所以菱形的面积为:(6×1)÷2=2菱形的面积为:2故答案为2点睛:本题考查菱形的性质菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系三、解答题(共8题,共72分)17、塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形本题涉及两个直角三角形,即RtBED和RtDAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC试题解析:作BECD于E可得RtBED和矩形ACEB则有CE=AB=16,AC=BE在RtBED中,DBE=45°,DE=BE=AC在RtDAC中,DAC=60°,DC=ACtan60°=AC16+DE=DC,16+AC=AC,解得:AC=8+8=DE所以塔CD的高度为(8+24)米37.9米,答:塔CD的高度为37.9米18、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°30°或 45°90°【解析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出ABA(2)根据切线的性质得到OBA=90°,从而得到ABA=120°,就可求出ABP,进而求出OBP=30°过点O作OGBP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长拓展:(1)过A'、O作A'HMN于点H,ODA'C于点D用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定AC与半圆相切;(2)当NA与半圆相切时,可知ONAN,则可知=45°,当O在时,连接MO,则可知NO=MN,可求得MNO=60°,可求得=30°;(3)根据点A的位置不同得到线段NO与半圆O只有一个公共点N时的取值范围是0°30°或45°90°【详解】发现:(1)过点O作OHAB,垂足为H,如图1所示,O的半径为2,AB=2,OH=在BOH中,OH=1,BO=2ABO=30°图形沿BP折叠,得到点A的对称点AOBA=ABO=30°ABA=60°(2)过点O作OGBP,垂足为G,如图2所示BA与O相切,OBABOBA=90°OBH=30°,ABA=120°ABP=ABP=60°OBP=30°OG=OB=1BG=OGBP,BG=PG=BP=2折痕的长为2拓展:(1)相切分别过A'、O作A'HMN于点H,ODA'C于点D如图3所示,A'CMN四边形A'HOD是矩形A'H=O=15°A'NH=30OD=A'H=A'N=MN=2A'C与半圆(2)当NA与半圆O相切时,则ONNA,ONA=2=90°,=45当O在上时,连接MO,则可知NO=MN,OMN=0°MNO=60°,=30°,故答案为:45°;30°(3)点P,M不重合,0,由(2)可知当增大到30°时,点O在半圆上,当0°30°时点O在半圆内,线段NO与半圆只有一个公共点B;当增大到45°时NA与半圆相切,即线段NO与半圆只有一个公共点B当继续增大时,点P逐渐靠近点N,但是点P,N不重合,90°,当45°90°线段BO与半圆只有一个公共点B综上所述0°30°或45°90°【点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键19、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形【解析】【分析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到A2B2C2,(3)根据勾股定理逆定理解答即可【详解】(1)如图所示,A1B1C1即为所求;(2)如图所示,A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B=,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形【点睛】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形20、(1)45°;(2)见解析;(3)ACD=15°;ACD=105°;ACD=60°;ACD=120°;36或【解析】(1)易得ABC是等腰直角三角形,从而BAC=CBA=45°;(2)分当 B在PA的中垂线上,且P在右时;B在PA的中垂线上,且P在左;A在PB的中垂线上,且P在右时;A在PB的中垂线上,且P在左时四中情况求解;(3)先说明四边形OHEF是正方形,再利用DOHDFE求出EF的长,然后利用割补法求面积;根据EPCEBA可求PC=4,根据PDCPCA可求PD PA=PC2=16,再根据SABP=SABC得到,利用勾股定理求出k2,然后利用三角形面积公式求解.【详解】(1)解:(1)连接BC,AB是直径,ACB=90°.ABC是等腰直角三角形,BAC=CBA=45°; (2)解:,CDB=CDP=45°,CB= CA,CD平分BDP又CDBP,BE=EP,即CD是PB的中垂线,CP=CB= CA, (3) ()如图2,当 B在PA的中垂线上,且P在右时,ACD=15°;()如图3,当B在PA的中垂线上,且P在左,ACD=105°;()如图4,A在PB的中垂线上,且P在右时ACD=60°;()如图5,A在PB的中垂线上,且P在左时ACD=120°()如图6, , .()如图7, , , . , . , , , .设BD=9k,PD=2k, , , , .【点睛】本题是圆的综合题,熟练掌握30°角所对的直角边等于斜边的一半,平行线的性质,垂直平分线的性质,相似三角形的判定与性质,圆周角定理,圆内接四边形的性质,勾股定理,同底等高的三角形的面积相等是解答本题的关键.21、(1);(2);【解析】(1)根据负整数指数幂、特殊角的三角函数值、零指数幂可以解答本题;(2)根据分式的减法和除法可以解答本题【详解】解:(1)原式 (2)原式 【点睛】本题考查分式的混合运算、实数的运算、负整数指数幂、特殊角的三角函数值、零指数幂,解答本题的关键是明确它们各自的计算方法22、(1)证明见解析(2)cm,cm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OBPB即可;(2)利用菱形、矩形的性质,求出圆心角COD即可解决问题.【详解】(1)如图连接OB、BC,OA=OB,OAB=OBA=30°,COB=OAB=OBA=60°,OB=OC,OBC是等边三角形,BC=OC,PC=OA=OC,BC=CO=CP,PBO=90°,OBPB,PB是O的切线;(2)的长为cm时,四边形ADPB是菱形,四边形ADPB是菱形,ADB=ACB=60°,COD=2CAD=60°,的长=cm;当四边形ADCB是矩形时,易知COD=120°,的长=cm,故答案为:cm, cm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.23、(1)证明见解析;(2)结论:成立理由见解析;(3)30°,1+【解析】(1)只要证明AB=ED,ABED即可解决问题;(2)成立如图2中,过点M作MGDE交CE于G由四边形DMGE是平行四边形,推出ED=GM,且EDGM,由(1)可知AB=GM,ABGM,可知ABDE,AB=DE,即可推出四边形ABDE是平行四边形;(3)如图3中,取线段HC的中点I,连接MI,只要证明MI=AM,MIAC,即可解决问题;设DH=x,则AH= x,AD=2x,推出AM=4+2x,BH=4+2x,由四边形ABDE是平行四边形,推出DFAB,推出 ,可得,解方程即可;【详解】(1)证明:如图1中,DEAB,EDC=ABM,CEAM,ECD=ADB,AM是ABC的中线,且D与M重合,BD=DC,ABDEDC,AB=ED,ABED,四边形ABDE是平行四边形(2)结论:成立理由如下:如图2中,过点M作MGDE交CE于GCEAM,四边形DMGE是平行四边形,ED=GM,且EDGM,由(1)可知AB=GM,ABGM,ABDE,AB=DE,四边形ABDE是平行四边形(3)如图3中,取线段HC的中点I,连接MI,BM=MC,MI是BHC的中位线,MIBH,MI=BH,BHAC,且BH=AMMI=AM,MIAC,CAM=30°设DH=x,则AH=x,AD=2x,AM=4+2x,BH=4+2x,四边形ABDE是平行四边形,DFAB,解得x=1+或1(舍弃),DH=1+【点睛】本题考查了四边形综合题、平行四边形的判定和性质、直角三角形30度角的判定、平行线分线成比例定理、三角形的中位线定理等知识,解题的关键能正确添加辅助线,构造特殊四边形解决问题24、(1)50(2)420(3)P=【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50482014=4(名);即可补全统计图;(2)由题意可求得130145分所占比例,进而求出答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则第五组人数为:50482014=4(名);如图:(2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),答:考试成绩评为“B”的学生大约有448名;(3)画树状图得:共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,所选两名学生刚好是一名女生和一名男生的概率为: =考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识视频