2023届山东省青岛五校联考中考考前最后一卷数学试卷含解析.doc
-
资源ID:87789722
资源大小:630.50KB
全文页数:15页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届山东省青岛五校联考中考考前最后一卷数学试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上如果244°,那么1的度数是( )A14° B15° C16° D17°2若不等式组的整数解共有三个,则a的取值范围是()A5a6B5a6C5a6D5a63计算(5)(3)的结果等于()A8 B8 C2 D24已知二次函数的与的不符对应值如下表:且方程的两根分别为,下面说法错误的是( )A,BC当时,D当时,有最小值5用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A4cmB8cmC(a+4)cmD(a+8)cm6已知a1,点A(x1,2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正确的是()Ax1x2x3Bx1x3x2Cx3x1x2Dx2x3x17据中国电子商务研究中心发布年度中国共享经济发展报告显示,截止2017年12月,共有190家共享经济平台获得亿元投资,数据亿元用科学记数法可表示为A元B元C元D元8如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将ABO绕点B逆时针旋转60°后得到A'BO',若函数y=(x0)的图象经过点O',则k的值为()A2B4C4D89计算(1)÷的结果是( )Ax1BCD10下列是我国四座城市的地铁标志图,其中是中心对称图形的是( )ABCD二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(2,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿OAB路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿OCBA路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t0),OMN的面积为S则:AB的长是_,BC的长是_,当t3时,S的值是_12如图,在平面直角坐标系中,矩形活动框架ABCD的长AB为2,宽AD为,其中边AB在x轴上,且原点O为AB的中点,固定点A、B,把这个矩形活动框架沿箭头方向推,使D落在y轴的正半轴上点D处,点C的对应点C的坐标为_13每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_14在ABC中,点D在边BC上,且BD:DC=1:2,如果设=, =,那么等于_(结果用、的线性组合表示)15如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,如此继续下去,结果如下表:则an_(用含n的代数式表示)所剪次数1234n正三角形个数471013an16如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将PCD沿直线PD折叠,使点C落到点F处;过点P作BPF的角平分线交AB于点E设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )17已知a+2,求a2+_三、解答题(共7小题,满分69分)18(10分)尺规作图:用直尺和圆规作图,不写作法,保留痕迹已知:如图,线段a,h求作:ABC,使AB=AC,且BAC=,高AD=h19(5分)(1)计算:14+sin61°+()2()1(2)解不等式组,并把它的解集在数轴上表示出来20(8分)如图,一次函数y=2x4的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标为1(1)求反比例函数的解析式;(2)点P是x轴上一动点,ABP的面积为8,求P点坐标21(10分)已知:如图,E,F是ABCD的对角线AC上的两点,BEDF.求证:AFCE22(10分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包若供货厂家规定市场价不得低于30元/包试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?23(12分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售(1)若养殖场一天的总销售收入为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值24(14分)如图,BAC的平分线交ABC的外接圆于点D,交BC于点F,ABC的平分线交AD于点E(1)求证:DEDB:(2)若BAC90°,BD4,求ABC外接圆的半径;(3)若BD6,DF4,求AD的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】依据ABC=60°,2=44°,即可得到EBC=16°,再根据BECD,即可得出1=EBC=16°【详解】如图,ABC=60°,2=44°,EBC=16°,BECD,1=EBC=16°,故选:C【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等2、C【解析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围【详解】解不等式组得:2xa,不等式组的整数解共有3个,这3个是3,4,5,因而5a1故选C【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a的范围,是解答本题的关键求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了3、C【解析】分析:减去一个数,等于加上这个数的相反数 依此计算即可求解详解:(-5)-(-3)=-1故选:C点睛:考查了有理数的减法,方法指引:在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)4、C【解析】分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.【详解】A、利用图表中x0,1时对应y的值相等,x1,2时对应y的值相等,x2,5时对应y的值相等,x2,y5,故此选项正确;B、方程ax2bcc0的两根分别是x1、x2(x1x2),且x1时y1;x2时,y1,1x22,故此选项正确;C、由题意可得出二次函数图像向上,当x1xx2时,y0,故此选项错误;D、利用图表中x0,1时对应y的值相等,当x时,y有最小值,故此选项正确,不合题意.所以选C.【点睛】此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.5、B【解析】【分析】根据题意得出原正方形的边长,再得出新正方形的边长,继而得出答案【详解】原正方形的周长为acm,原正方形的边长为cm,将它按图的方式向外等距扩1cm,新正方形的边长为(+2)cm,则新正方形的周长为4(+2)=a+8(cm),因此需要增加的长度为a+8a=8cm,故选B【点睛】本题考查列代数式,解题的关键是根据题意表示出新正方形的边长及规范书写代数式6、B【解析】根据的图象上的三点,把三点代入可以得到x1 ,x1 ,x3,在根据a的大小即可解题【详解】解:点A(x1,1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,x1 ,x1 ,x3 ,a1,a10,x1x3x1故选B【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断7、C【解析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数【详解】亿=115956000000,所以亿用科学记数法表示为1.15956×1011,故选C【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数,表示时关键要正确确定a的值以及n的值8、C【解析】根据题意可以求得点O'的坐标,从而可以求得k的值【详解】点B的坐标为(0,4),OB=4,作OCOB于点C,ABO绕点B逆时针旋转60°后得到A'BO',OB=OB=4,OC=4×sin60°=2,BC=4×cos60°=2,OC=2,点O的坐标为:(2,2),函数y=(x0)的图象经过点O',2=,得k=4,故选C【点睛】本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答9、B【解析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得【详解】解:原式=(-)÷=,故选B【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则10、D【解析】根据中心对称图形的定义解答即可.【详解】选项A不是中心对称图形;选项B不是中心对称图形;选项C不是中心对称图形;选项D是中心对称图形.故选D.【点睛】本题考查了中心对称图形的定义,熟练运用中心对称图形的定义是解决问题的关键.二、填空题(共7小题,每小题3分,满分21分)11、10, 1, 1 【解析】作CDx轴于D,CEOB于E,由勾股定理得出AB10,OC1,求出BEOBOE4,得出OEBE,由线段垂直平分线的性质得出BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,由三角形面积公式即可得出OMN的面积【详解】解:作CDx轴于D,CEOB于E,如图所示:由题意得:OA1,OB8,AOB90°,AB10;点C的坐标(2,4),OC1,OE4,BEOBOE4,OEBE,BCOC1;当t3时,N到达C点,M到达OA的中点,OM3,ONOC1,OMN的面积S×3×41;故答案为:10,1,1【点睛】本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键12、(2,1)【解析】由已知条件得到AD=AD=,AO=AB=1,根据勾股定理得到OD=1,于是得到结论【详解】解: AD=AD=,AO=AB=1,OD=1,CD=2,CDAB,C(2,1),故答案为:(2,1)【点睛】本题考查了矩形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键13、2【解析】设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an2n2”,再代入n2029即可求出结论【详解】设第n层有an个三角形(n为正整数),a22,a22+23,a32×2+25,a42×3+27,an2(n2)+22n2当n2029时,a20292×202922故答案为2【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an2n2”是解题的关键14、【解析】根据三角形法则求出即可解决问题;【详解】如图,=, =,=+=-,BD=BC,=故答案为【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型15、3n+1【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形即剪n次时,共有4+3(n-1)=3n+1试题解析:故剪n次时,共有4+3(n-1)=3n+1考点:规律型:图形的变化类16、C【解析】先证明BPECDP,再根据相似三角形对应边成比例列出式子变形可得.【详解】由已知可知EPD=90°,BPE+DPC=90°,DPC+PDC=90°,CDP=BPE,B=C=90°,BPECDP,BP:CDBE:CP,即:3:(5-),(05);故选C考点:1折叠问题;2相似三角形的判定和性质;3二次函数的图象17、1【解析】试题分析:=4,=4-1=1故答案为1考点:完全平方公式三、解答题(共7小题,满分69分)18、见解析【解析】作CAB=,再作CAB的平分线,在角平分线上截取AD=h,可得点D,过点D作AD的垂线,从而得出ABC【详解】解:如图所示,ABC即为所求【点睛】考查作图-复杂作图,掌握做一个角等于已知角、作角平分线及过直线上一点作已知直线的垂线的基本作图和等腰三角形的性质是解题的关键19、(1)5;(2)2x【解析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可【详解】(1)原式 =5;(2)解不等式得,x2,解不等式得, 所以不等式组的解集是 用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定20、(1)y=;(2)(4,0)或(0,0)【解析】(1)把x=1代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标,后利用ABP的面积为8,可求P点坐标.【详解】解:(1)把x=1代入y=2x4,可得y=2×14=2,A(1,2),把(1,2)代入y=,可得k=1×2=6,反比例函数的解析式为y=;(2)根据题意可得:2x4=,解得x1=1,x2=1,把x2=1,代入y=2x4,可得y=6,点B的坐标为(1,6)设直线AB与x轴交于点C,y=2x4中,令y=0,则x=2,即C(2,0),设P点坐标为(x,0),则×|x2|×(2+6)=8,解得x=4或0,点P的坐标为(4,0)或(0,0)【点睛】本题主要考查用待定系数法求一次函数解析式,及一次函数与反比例函数交点的问题,联立两函数可求解。21、参见解析【解析】分析:先证ACB=CAD,再证出BECDFA,从而得出CE=AF详解:证明:平行四边形中,又, 点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.22、(1)y=5x+350;(2)w=5x2+450x7000(30x40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;(2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;(3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题试题解析:解:(1)由题意可得:y=200(x30)×5=5x+350即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=5x+350;(2)由题意可得,w=(x20)×(5x+ 350)=5x2+450x7000(30x70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=5x2+450x7000(30x40);(3)w=5x2+450x7000=5(x45)2+1二次项系数50,x=45时,w取得最大值,最大值为1答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值23、(1)y=50x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【解析】(1)根据题意可以得到y关于x的函数解析式,本题得以解决;(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决【详解】(1)由题意可得,y=10×50(30x)+3100x50(30x)=50x+10500,即y与x的函数关系式为y=50x+10500;(2)由题意可得,得x,x是整数,y=50x+10500,当x=12时,y取得最大值,此时,y=50×12+10500=9900,30x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答24、(1)见解析;(2)2 (3)1【解析】(1)通过证明BED=DBE得到DB=DE;(2)连接CD,如图,证明DBC为等腰直角三角形得到BC=BD=4,从而得到ABC外接圆的半径;(3)证明DBFADB,然后利用相似比求AD的长【详解】(1)证明:AD平分BAC,BE平分ABD,1=2,3=4,BED=1+3=2+4=5+4=DBE,DB=DE;(2)解:连接CD,如图,BAC=10°,BC为直径,BDC=10°,1=2,DB=BC,DBC为等腰直角三角形,BC=BD=4,ABC外接圆的半径为2;(3)解:5=2=1,FDB=BDA,DBFADB,=,即=,AD=1【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心也考查了圆周角定理和相似三角形的判定与性质