2023届四川省达州市高级中学中考三模数学试题含解析.doc
-
资源ID:87789757
资源大小:941KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届四川省达州市高级中学中考三模数学试题含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )A25×104m2B0.25×106m2C2.5×105m2D2.5×106m22如图,直线ykx+b与ymx+n分别交x轴于点A(1,0),B(4,0),则函数y(kx+b)(mx+n)中,则不等式的解集为()Ax2B0x4C1x4Dx1 或 x43据浙江省统计局发布的数据显示,2017年末,全省常住人口为5657万人数据“5657万”用科学记数法表示为ABCD4二次函数yax2+c的图象如图所示,正比例函数yax与反比例函数y在同一坐标系中的图象可能是()ABCD5如图,已知点 P 是双曲线 y上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ,则经过点 Q 的双曲线的表达式为( )Ay By Cy Dy6如图,ABC是O的内接三角形,AC是O的直径,C=50°,ABC的平分线BD交O于点D,则BAD的度数是( )A45°B85°C90°D95°7已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )A3.1; B4; C2; D6.18近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A1.8×105B1.8×104C0.18×106D18×1049若m,n是一元二次方程x22x1=0的两个不同实数根,则代数式m2m+n的值是()A1B3C3D110一元二次方程2x23x+1=0的根的情况是()A有两个相等的实数根B有两个不相等的实数根C只有一个实数根D没有实数根11在平面直角坐标系中,将点 P (4,2)绕原点O 顺时针旋转 90°,则其对应点Q 的坐标为( )A(2,4)B(2,4)C(2,4)D(2,4)12关于x的正比例函数,y=(m+1)若y随x的增大而减小,则m的值为 ( )A2B-2C±2D-二、填空题:(本大题共6个小题,每小题4分,共24分)13因式分解:4x2y9y3_14某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是_m15.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角ACB=120°, 则此圆锥高 OC 的长度是_16将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将RtBCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形17如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为_.18如图,若点 的坐标为 ,则 =_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,(1)求出的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PCPD的最小值(不必说明理由)20(6分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元件)如下表所示:品种AB原来的运费4525现在的运费3020(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元21(6分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为米.若苗圃园的面积为72平方米,求;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;22(8分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.求关于的函数关系式;该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.23(8分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列问题:(1)这四个班参与大赛的学生共_人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.24(10分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求OBC的面积.25(10分)如图,AB是O的直径,点C在AB的延长线上,AD平分CAE交O于点D,且AECD,垂足为点E(1)求证:直线CE是O的切线(2)若BC3,CD3,求弦AD的长26(12分)已知AB是O的直径,弦CD与AB相交,BAC40°(1)如图1,若D为弧AB的中点,求ABC和ABD的度数;(2)如图2,过点D作O的切线,与AB的延长线交于点P,若DPAC,求OCD的度数27(12分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少球两红一红一白两白礼金券(元)182418(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】科学记数法的表示形式为a×10n,其中1|a|10,n为整数【详解】解:由科学记数法可知:250000 m2=2.5×105m2,故选C【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键2、C【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可【详解】直线y1kx+b与直线y2mx+n分别交x轴于点A(1,0),B(4,0),不等式(kx+b)(mx+n)0的解集为1x4,故选C【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变3、C【解析】科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数【详解】解:5657万用科学记数法表示为,故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值4、C【解析】根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a0,c0,正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.5、D【解析】过P,Q分别作PMx轴,QNx轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可【详解】过P,Q分别作PMx轴,QNx轴,POQ=90°,QON+POM=90°,QON+OQN=90°,POM=OQN,由旋转可得OP=OQ,在QON和OPM中,QONOPM(AAS),ON=PM,QN=OM,设P(a,b),则有Q(-b,a),由点P在y=上,得到ab=3,可得-ab=-3,则点Q在y=-上故选D【点睛】此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键6、B【解析】解:AC是O的直径,ABC=90°,C=50°,BAC=40°,ABC的平分线BD交O于点D,ABD=DBC=45°,CAD=DBC=45°,BAD=BAC+CAD=40°+45°=85°,故选B【点睛】本题考查圆周角定理;圆心角、弧、弦的关系7、A【解析】数据组2、x、8、1、1、2的众数是2,x=2,这组数据按从小到大排列为:2、2、2、1、1、8,这组数据的中位数是:(2+1)÷2=3.1.故选A.8、A【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】180000=1.8×105,故选A【点睛】本题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、B【解析】把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值【详解】解:若,是一元二次方程的两个不同实数根,故选B【点睛】本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式10、B【解析】试题分析:对于一元二次方程,当=时方程有两个不相等的实数根,当=时方程有两个相等的实数根,当=时方程没有实数根.根据题意可得:=,则方程有两个不相等的实数根.11、A【解析】首先求出MPO=QON,利用AAS证明PMOONQ,即可得到PM=ON,OM=QN,进而求出Q点坐标【详解】作图如下,MPO+POM=90°,QON+POM=90°,MPO=QON,在PMO和ONQ中, ,PMOONQ,PM=ON,OM=QN,P点坐标为(4,2),Q点坐标为(2,4),故选A【点睛】此题主要考查了旋转的性质,以及全等三角形的判定和性质,关键是掌握旋转后对应线段相等12、B【解析】根据正比例函数定义可得m2-3=1,再根据正比例函数的性质可得m+10,再解即可【详解】由题意得:m2-3=1,且m+10,解得:m=-2,故选:B【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k0)的自变量指数为1,当k0时,y随x的增大而减小二、填空题:(本大题共6个小题,每小题4分,共24分)13、y(2x+3y)(2x-3y)【解析】直接提取公因式y,再利用平方差公式分解因式即可【详解】4x2y9y3=y(4x2-9y2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键14、1【解析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,解得:,抛物线的解析式为:y=x2+2.4,菜农的身高为1.8m,即y=1.8,则1.8=x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为115、4【解析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA,最后用勾股定理即可得出结论【详解】设圆锥底面圆的半径为 r,AC=6,ACB=120°,=2r, r=2,即:OA=2,在 RtAOC 中,OA=2,AC=6,根据勾股定理得,OC=4, 故答案为4【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA的长是解本题的关键16、,【解析】试题分析:当点B的移动距离为时,C1BB1=60°,则ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形试题解析:如图:当四边形ABC1D是矩形时,B1BC1=90°30°=60°,B1C1=1,BB1=,当点B的移动距离为时,四边形ABC1D1为矩形;当四边形ABC1D是菱形时,ABD1=C1BD1=30°,B1C1=1,BB1=,当点B的移动距离为时,四边形ABC1D1为菱形考点:1菱形的判定;2矩形的判定;3平移的性质17、【解析】先根据平行四边形的性质求出对角线所分的四个三角形面积相等,再求出概率即可【详解】解:四边形是平行四边形,对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,针头扎在阴影区域内的概率为;故答案为:【点睛】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比18、 【解析】根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案【详解】如图,由勾股定理,得:OA=1sin1=,故答案为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(2)2;(2)y=x+2;(3)【解析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD的长【详解】解:(2)反比例函数y=的图象上的点横坐标与纵坐标的积相同,A(2,2),B(-2,-2),C(3,2)k=2(2)设直线AB的解析式为y=mx+n,则有,解得,直线AB的解析式为y=x+2(3)C、D关于直线AB对称,D(0,4)作D关于x轴的对称点D(0,-4),连接CD交x轴于P,此时PC+PD的值最小,最小值=CD=【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题20、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元【解析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案【详解】解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据题意得:,解得:,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+1060,由题意得:38-m2(10+m),解得:m6,即6m8,一次函数W随m的增大而增大当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值21、(1)2(2)当x=4时,y最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.解: (1)苗圃园与墙平行的一边长为(312x)米依题意可列方程x(312x)72,即x215x361 解得x13(舍去),x22 (2)依题意,得8312x3解得6x4面积Sx(312x)2(x)2(6x4)当x时,S有最大值,S最大; 当x4时,S有最小值,S最小4×(3122)88 “点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.22、 (1)每部型手机的销售利润为元,每部型手机的销售利润为元;(2);手机店购进部型手机和部型手机的销售利润最大;(3)手机店购进部型手机和部型手机的销售利润最大.【解析】(1)设每部型手机的销售利润为元,每部型手机的销售利润为元,根据题意列出方程组求解即可;(2)根据总利润=销售A型手机的利润+销售B型手机的利润即可列出函数关系式;根据题意,得,解得,根据一次函数的增减性可得当当时,取最大值;(3)根据题意,然后分当时,当时,当时,三种情况进行讨论求解即可.【详解】解:(1)设每部型手机的销售利润为元,每部型手机的销售利润为元.根据题意,得,解得答:每部型手机的销售利润为元,每部型手机的销售利润为元.(2)根据题意,得,即.根据题意,得,解得.,随的增大而减小.为正整数,当时,取最大值,.即手机店购进部型手机和部型手机的销售利润最大.(3)根据题意,得.即,.当时,随的增大而减小,当时,取最大值,即手机店购进部型手机和部型手机的销售利润最大;当时,即手机店购进型手机的数量为满足的整数时,获得利润相同;当时,随的增大而增大,当时,取得最大值,即手机店购进部型手机和部型手机的销售利润最大.【点睛】本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.23、(1)100;(2)见解析;(3)108°;(4)1250.【解析】试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案试题解析:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:130%20%35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人)答:全校的学生中参与这次活动的大约有1250人考点:条形统计图;扇形统计图;样本估计总体.24、(1)A(4,3);(2)28.【解析】(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在RtOAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得OBC的面积.【详解】解:(1)由题意得: ,解得,点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D, 在RtOAD中,由勾股定理得, .P(a,0),B(a,),C(a,-a+7),BC=,解得a=8.25、(1)证明见解析(2) 【解析】(1)连结OC,如图,由AD平分EAC得到1=3,加上1=2,则3=2,于是可判断ODAE,根据平行线的性质得ODCE,然后根据切线的判定定理得到结论;(2)由CDBCAD,可得,推出CD2=CBCA,可得(3)2=3CA,推出CA=6,推出AB=CABC=3,设BD=k,AD=2k,在RtADB中,可得2k2+4k2=5,求出k即可解决问题【详解】(1)证明:连结OC,如图,AD平分EAC,1=3,OA=OD,1=2,3=2,ODAE,AEDC,ODCE,CE是O的切线;(2)CDO=ADB=90°,2=CDB=1,C=C,CDBCAD,CD2=CBCA,(3)2=3CA,CA=6,AB=CABC=3,,设BD=k,AD=2k,在RtADB中,2k2+4k2=5,k=,AD=26、(1)45°;(2)26°【解析】(1)根据圆周角和圆心角的关系和图形可以求得ABC和ABD的大小;(2)根据题意和平行线的性质、切线的性质可以求得OCD的大小【详解】(1)AB是O的直径,BAC=38°, ACB=90°,ABC=ACBBAC=90°38°=52°,D为弧AB的中点,AOB=180°,AOD=90°,ABD=45°;(2)连接OD,DP切O于点D,ODDP,即ODP=90°,DPAC,BAC=38°,P=BAC=38°,AOD是ODP的一个外角,AOD=P+ODP=128°,ACD=64°,OC=OA,BAC=38°,OCA=BAC=38°,OCD=ACDOCA=64°38°=26°【点睛】本题考查切线的性质、圆周角定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答27、 (1)见解析 (2)选择摇奖【解析】试题分析:(1)画树状图列出所有等可能结果,再让所求的情况数除以总情况数即为所求的概率;(2)算出相应的平均收益,比较大小即可试题解析:(1)树状图为:一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=;(2)两红的概率P=,两白的概率P=,一红一白的概率P=,摇奖的平均收益是:×18+×24+×18=22,2220,选择摇奖【点睛】主要考查的是概率的计算,画树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比