2023届山东省商河县中考猜题数学试卷含解析.doc
-
资源ID:87789837
资源大小:548.50KB
全文页数:14页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届山东省商河县中考猜题数学试卷含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在中,、分别为、边上的点,与相交于点,则下列结论一定正确的是( )ABCD2如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,ABC=90°,CAx轴,点C在函数y=(x0)的图象上,若AB=2,则k的值为()A4B2C2D3若ab0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()ABCD4有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )A4.8,6,6B5,5,5C4.8,6,5D5,6,65把抛物线y2x2向上平移1个单位,得到的抛物线是()Ay2x2+1By2x21Cy2(x+1)2Dy2(x1)26关于x的方程(a1)x|a|+13x+20是一元二次方程,则( )Aa±1Ba1Ca1Da±17小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等设小明打字速度为x个/分钟,则列方程正确的是()ABCD8如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3cm,则滑轮上的点F旋转了( )A60°B90°C120°D45°9下列各式中,计算正确的是 ( )ABCD10分式有意义,则x的取值范围是()Ax2Bx0Cx2Dx7二、填空题(共7小题,每小题3分,满分21分)11如图,在平面直角坐标系xOy中,DEF可以看作是ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由ABC得到DEF的过程:_12从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_13若 m、n 是方程 x2+2018x1=0 的两个根,则 m2n+mn2mn=_14有一组数据:3,5,5,6,7,这组数据的众数为_15分解因式:x3y2x2y+xy=_16如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是_17将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_三、解答题(共7小题,满分69分)18(10分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m当起重臂AC长度为9m,张角HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°0.47,cos28°0.88,tan28°0.53)19(5分)如图,抛物线l:y=(xh)22与x轴交于A,B两点(点A在点B的左侧),将抛物线在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数的图象(1)若点A的坐标为(1,0)求抛物线l的表达式,并直接写出当x为何值时,函数的值y随x的增大而增大;如图2,若过A点的直线交函数的图象于另外两点P,Q,且SABQ=2SABP,求点P的坐标;(2)当2x3时,若函数f的值随x的增大而增大,直接写出h的取值范围20(8分)已知抛物线y=x2+bx+c(b,c是常数)与x轴相交于A,B两点(A在B的左侧),与y轴交于点C(1)当A(1,0),C(0,3)时,求抛物线的解析式和顶点坐标;(2)P(m,t)为抛物线上的一个动点当点P关于原点的对称点P落在直线BC上时,求m的值;当点P关于原点的对称点P落在第一象限内,PA2取得最小值时,求m的值及这个最小值21(10分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF求证:AF=CE22(10分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x70时,y80;x60时,y1在销售过程中,每天还要支付其他费用350元求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?23(12分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上()ABC的面积等于_;()若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_24(14分)已知反比例函数的图象过点A(3,2)(1)试求该反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0m3,过点M作直线MBx轴,交y轴于点B;过点A作直线ACy轴,交x轴于点C,交直线MB于点D当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】根据平行线分线段成比例定理逐项分析即可.【详解】A.,故A正确;B. ,故B不正确;C. , ,故C不正确;D. ,故D不正确;故选A.【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.推论:平行于三角形一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.2、A【解析】【分析】作BDAC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用ACx轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值【详解】作BDAC于D,如图,ABC为等腰直角三角形,AC=AB=2,BD=AD=CD=,ACx轴,C(,2),把C(,2)代入y=得k=×2=4,故选A【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.3、D【解析】根据ab0及正比例函数与反比例函数图象的特点,可以从a0,b0和a0,b0两方面分类讨论得出答案【详解】解:ab0,分两种情况:(1)当a0,b0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a0,b0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题4、C【解析】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)÷5=4.8,故选C【点睛】本题考查众数;算术平均数;中位数5、A【解析】根据“上加下减”的原则进行解答即可【详解】解:由“上加下减”的原则可知,把抛物线y2x2向上平移1个单位,得到的抛物线是:y2x2+1故选A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键6、C【解析】根据一元一次方程的定义即可求出答案【详解】由题意可知:,解得a1故选C【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型7、C【解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大8、B【解析】由弧长的计算公式可得答案.【详解】解:由圆弧长计算公式,将l=3代入,可得n =90,故选B.【点睛】本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.9、C【解析】接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案【详解】A、无法计算,故此选项错误;B、a2a3=a5,故此选项错误;C、a3÷a2=a,正确;D、(a2b)2=a4b2,故此选项错误故选C【点睛】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键10、A【解析】直接利用分式有意义则分母不为零进而得出答案【详解】解:分式有意义,则x10,解得:x1故选:A【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键当分母不等于零时,分式有意义;当分母等于零时,分式无意义.分式是否有意义与分子的取值无关.二、填空题(共7小题,每小题3分,满分21分)11、平移,轴对称【解析】分析:根据平移的性质和轴对称的性质即可得到由OCD得到AOB的过程详解:ABC向上平移5个单位,再沿y轴对折,得到DEF,故答案为:平移,轴对称点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小12、.【解析】试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为.【点睛】本题考查概率公式,掌握图形特点是解题关键,难度不大.13、1【解析】根据根与系数的关系得到 m+n=2018,mn=1,把 m2n+mm2mn分解因式得到 mn(m+n1),然后利用整体代入的方法计算【详解】解:m、n 是方程 x2+2018x1=0 的两个根, 则原式=mn(m+n1)=1×(20181)=1×(1)=1,故答案为:1【点睛】本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c=0 的两根分别为与,则解题时要注意这两个关 系的合理应用14、1【解析】根据众数的概念进行求解即可得.【详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键15、xy(x1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式=xy(x1-1x+1)=xy(x-1)1故答案为:xy(x-1)1【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键16、1:4【解析】两个相似三角形对应边上的高的比为14,这两个相似三角形的相似比是1:4相似三角形的周长比等于相似比,它们的周长比1:4,故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比.17、y=2x+1【解析】分析:直接根据函数图象平移的法则进行解答即可详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;故答案为y=2x+1点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键三、解答题(共7小题,满分69分)18、操作平台C离地面的高度为7.6m【解析】分析:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,HAF=90°,再计算出CAF=28°,则在RtACF中利用正弦可计算出CF,然后计算CF+EF即可详解:作CEBD于F,AFCE于F,如图2,易得四边形AHEF为矩形,EF=AH=3.4m,HAF=90°,CAF=CAH-HAF=118°-90°=28°,在RtACF中,sinCAF=,CF=9sin28°=9×0.47=4.23,CE=CF+EF=4.23+3.47.6(m),答:操作平台C离地面的高度为7.6m点睛:本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算19、(1)当1x3或x5时,函数的值y随x的增大而增大,P(,);(2)当3h4或h0时,函数f的值随x的增大而增大.【解析】试题分析:(1)利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数的值y随x的增大而增大(即呈上升趋势)的x的取值;如图2,作辅助线,构建对称点F和直角角三角形AQE,根据SABQ=2SABP,得QE=2PD,证明PADQAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;(2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值试题解析:(1)把A(1,0)代入抛物线y=(xh)22中得:(xh)22=0,解得:h=3或h=1,点A在点B的左侧,h0,h=3,抛物线l的表达式为:y=(x3)22,抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1x3或x5时,函数的值y随x的增大而增大;如图2,作PDx轴于点D,延长PD交抛物线l于点F,作QEx轴于E,则PDQE,由对称性得:DF=PD,SABQ=2SABP,ABQE=2×ABPD,QE=2PD,PDQE,PADQAE,AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,(1+a3)22),点F、Q在抛物线l上,PD=DF=(1+a3)22,QE=(1+2a3)22,(1+2a3)22=2(1+a3)22,解得:a=或a=0(舍),P(,);(2)当y=0时,(xh)22=0,解得:x=h+2或h2,点A在点B的左侧,且h0,A(h2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,3h4,由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+22,h0,综上所述,当3h4或h0时,函数f的值随x的增大而增大考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.20、(1)抛物线的解析式为y=x33x1,顶点坐标为(1,4);(3)m=;PA3取得最小值时,m的值是,这个最小值是【解析】(1)根据A(1,3),C(3,1)在抛物线y=x3+bx+c(b,c是常数)的图象上,可以求得b、c的值;(3)根据题意可以得到点P的坐标,再根据函数解析式可以求得点B的坐标,进而求得直线BC的解析式,再根据点P落在直线BC上,从而可以求得m的值;根据题意可以表示出PA3,从而可以求得当PA3取得最小值时,m的值及这个最小值【详解】解:(1)抛物线y=x3+bx+c(b,c是常数)与x轴相交于A,B两点,与y轴交于点C,A(1,3),C(3,1),解得:,该抛物线的解析式为y=x33x1y=x33x1=(x1)34,抛物线的顶点坐标为(1,4);(3)由P(m,t)在抛物线上可得:t=m33m1点P和P关于原点对称,P(m,t),当y=3时,3=x33x1,解得:x1=1,x3=1,由已知可得:点B(1,3)点B(1,3),点C(3,1),设直线BC对应的函数解析式为:y=kx+d,解得:,直线BC的直线解析式为y=x1点P落在直线BC上,t=m1,即t=m+1,m33m1=m+1,解得:m=;由题意可知,点P(m,t)在第一象限,m3,t3,m3,t3二次函数的最小值是4,4t3点P(m,t)在抛物线上,t=m33m1,t+1=m33m,过点P作PHx轴,H为垂足,有H(m,3)又A(1,3),则PH3=t3,AH3=(m+1)3在RtPAH中,PA3=AH3+PH3,PA3=(m+1)3+t3=m33m+1+t3=t3+t+4=(t+)3+,当t=时,PA3有最小值,此时PA3=,=m33m1,解得:m=m3,m=,即PA3取得最小值时,m的值是,这个最小值是【点睛】本题是二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答21、证明见解析.【解析】试题分析:根据矩形的性质得出求出根据平行四边形的判定得出四边形是平行四边形,即可得出答案.试题解析:四边形ABCD是矩形, 四边形是平行四边形, 点睛:平行四边形的判定:有一组对边平行且相等的四边形是平行四边形.22、 (1) y2x+220(40x70);(2) w2x2+300x9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元【解析】(1)根据y与x成一次函数解析式,设为ykx+b(k0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润单价×销售量,列出w关于x的二次函数解析式即可;(3)利用二次函数的性质求出w的最大值,以及此时x的值即可【详解】(1)设ykx+b(k0),根据题意得,解得:k2,b220,y2x+220(40x70);(2)w(x40)(2x+220)3502x2+300x91502(x75)2+21;(3)w2(x75)2+21,40x70,x70时,w有最大值为w2×25+212050元,当销售单价为70元时,该公司日获利最大,为2050元【点睛】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键23、6 作出ACB的角平分线交AB于F,再过F点作FEAC于E,作FGBC于G 【解析】(1)根据三角形面积公式即可求解,(2)作出ACB的角平分线交AB于F,再过F点作FEAC于E,作FGBC于G,过G点作GDAC于D,四边形DEFG即为所求正方形【详解】解:(1)4×3÷2=6,故ABC的面积等于6.(2)如图所示,作出ACB的角平分线交AB于F,再过F点作FEAC于E,作FGBC于G,四边形DEFG即为所求正方形故答案为:6,作出ACB的角平分线交AB于F,再过F点作FEAC于E,作FGBC于G【点睛】本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键24、(1);(2)MB=MD【解析】(1)将A(3,2)分别代入y= ,y=ax中,得a、k的值,进而可得正比例函数和反比例函数的表达式;(2)有SOMB=SOAC=×=3 ,可得矩形OBDC的面积为12;即OC×OB=12 ;进而可得m、n的值,故可得BM与DM的大小;比较可得其大小关系.【详解】(1)将A(3,2)代入中,得2,k=6,反比例函数的表达式为(2)BM=DM,理由:SOMB=SOAC=×=3,S矩形OBDC=S四边形OADM+SOMB+SOAC=3+3+6=12,即OC·OB=12,OC=3,OB=4,即n=4, MB=,MD=,MB=MD【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,反比例函数比例系数的几何意义,矩形的性质等知识.熟练掌握待定系数法是解(1)的关键,掌握反比例函数系数的几何意义是解(2)的关键.