2023届山东省莒县重点名校中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()ABCD2下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图中有5个棋子,图中有10个棋子,图中有16个棋子,则图_中有个棋子( )A31B35C40D503某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A22x=16(27x)B16x=22(27x)C2×16x=22(27x)D2×22x=16(27x)4如图1,点P从ABC的顶点A出发,沿ABC匀速运动,到点C停止运动点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则ABC的面积是()A10B12C20D245如图,数轴上的四个点A,B,C,D对应的数为整数,且ABBCCD1,若|a|+|b|2,则原点的位置可能是()AA或BBB或CCC或DDD或A6已知二次函数y=(x+m)2n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )ABCD7点P(4,3)关于原点对称的点所在的象限是()A第四象限B第三象限C第二象限D第一象限8如图所示的四边形,与选项中的一个四边形相似,这个四边形是()ABCD9老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是( )A甲B乙C丙D丁10已知反比例函数y=,当1x3时,y的取值范围是()A0y1B1y2C2y1D6y2二、填空题(本大题共6个小题,每小题3分,共18分)11已知线段AB10cm,C为线段AB的黄金分割点(ACBC),则BC_12如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2019次运动后,动点P的坐标是_13如图,甲和乙同时从学校放学,两人以各自送度匀速步行回家,甲的家在学校的正西方向,乙的家在学校的正东方向,乙家离学校的距离比甲家离学校的距离远3900米,甲准备一回家就开始做什业,打开书包时发现错拿了乙的练习册于是立即步去追乙,终于在途中追上了乙并交还了练习册,然后再以先前的速度步行回家,(甲在家中耽搁和交还作业的时间忽略不计)结果甲比乙晚回到家中,如图是两人之间的距离y米与他们从学校出发的时间x分钟的函数关系图,则甲的家和乙的家相距_米14(题文)如图1,点P从ABC的顶点B出发,沿BCA匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则ABC的面积是_15若与是同类项,则的立方根是 16如图,ABCD中,对角线AC,BD相交于点O,且ACBD,请你添加一个适当的条件_,使ABCD成为正方形 三、解答题(共8题,共72分)17(8分)已知P是的直径BA延长线上的一个动点,P的另一边交于点C、D,两点位于AB的上方,6,OP=m,如图所示另一个半径为6的经过点C、D,圆心距(1)当m=6时,求线段CD的长;(2)设圆心O1在直线上方,试用n的代数式表示m;(3)POO1在点P的运动过程中,是否能成为以OO1为腰的等腰三角形,如果能,试求出此时n的值;如果不能,请说明理由18(8分)计算:2sin60°+|3|+(2)0()119(8分)试探究:小张在数学实践活动中,画了一个ABC,ACB90°,BC1,AC2,再以点B为圆心,BC为半径画弧交AB于点D,然后以A为圆心,AD长为半径画弧交AC于点E,如图1,则AE ;此时小张发现AE2ACEC,请同学们验证小张的发现是否正确拓展延伸:小张利用图1中的线段AC及点E,构造AEEFFC,连接AF,得到图2,试完成以下问题:(1)求证:ACFFCE;(2)求A的度数;(3)求cosA的值;应用迁移:利用上面的结论,求半径为2的圆内接正十边形的边长20(8分)如图,已知二次函数的图象经过,两点求这个二次函数的解析式;设该二次函数的对称轴与轴交于点,连接,求的面积21(8分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组求解一元二次方程,把它转化为两个一元一次方程来解求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知用“转化”的数学思想,我们还可以解一些新的方程例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C求AP的长22(10分)如图,已知ABC中,ACB90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E(1)如果BC6,AC8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PDAB,且CE2,ED3,求cosA的值;(3)联结PD,如果BP22CD2,且CE2,ED3,求线段PD的长23(12分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.(1)求与之间的函数关系式,并注明的取值范围;(2)为何值时,取最大值?最大值是多少?24如图,将等边ABC绕点C顺时针旋转90°得到EFC,ACE的平分线CD交EF于点D,连接AD、AF求CFA度数;求证:ADBC参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可【详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:故选B【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程2、C【解析】根据题意得出第n个图形中棋子数为1+2+3+n+1+2n,据此可得【详解】解:图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C【点睛】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况3、D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.4、B【解析】过点A作AMBC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,BM=3,BC=2BM=6,SABC=12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.5、B【解析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可【详解】ABBCCD1,当点A为原点时,|a|+|b|2,不合题意;当点B为原点时,|a|+|b|2,符合题意;当点C为原点时,|a|+|b|2,符合题意;当点D为原点时,|a|+|b|2,不合题意;故选:B【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值6、C【解析】试题解析:观察二次函数图象可知: 一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.故选D.7、C【解析】由题意得点P的坐标为(4,3),根据象限内点的符号特点可得点P1的所在象限【详解】设P(4,3)关于原点的对称点是点P1,点P1的坐标为(4,3),点P1在第二象限故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(,+)的点在第二象限8、D【解析】根据勾股定理求出四边形第四条边的长度,进而求出四边形四条边之比,根据相似多边形的性质判断即可【详解】解:作AEBC于E,则四边形AECD为矩形,EC=AD=1,AE=CD=3,BE=4,由勾股定理得,AB=5,四边形ABCD的四条边之比为1:3:5:5,D选项中,四条边之比为1:3:5:5,且对应角相等,故选D【点睛】本题考查的是相似多边形的判定和性质,掌握相似多边形的对应边的比相等是解题的关键9、B【解析】利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;【详解】五边形ABCDE是正五边形,ABG是等边三角形,直线DG是正五边形ABCDE和正三角形ABG的对称轴,DG垂直平分线段AB,BCD=BAE=EDC=108°,BCA=BAC=36°,DCA=72°,CDE+DCA=180°,DEAC,CDF=EDF=CFD=72°,CDF是等腰三角形故丁、甲、丙正确故选B【点睛】本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型10、D【解析】根据反比例函数的性质可以求得y的取值范围,从而可以解答本题【详解】解:反比例函数y=,在每个象限内,y随x的增大而增大,当1x3时,y的取值范围是6y1故选D【点睛】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答二、填空题(本大题共6个小题,每小题3分,共18分)11、(15-5)【解析】试题解析:C为线段AB的黄金分割点(ACBC),AC=AB=AC=×10=5-5,BC=AB-AC=10-(5-5)=(15-5)cm考点:黄金分割12、(2019,2)【解析】分析点P的运动规律,找到循环次数即可【详解】分析图象可以发现,点P的运动每4次位置循环一次每循环一次向右移动四个单位2019=4×504+3当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).【点睛】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环13、5200【解析】设甲到学校的距离为x米,则乙到学校的距离为(3900+x),甲的速度为4y(米/分钟),则乙的速度为3y(米/分钟),依题意得: 解得 所以甲到学校距离为2400米,乙到学校距离为6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【点睛】本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是读懂图象信息14、12【解析】根据题意观察图象可得BC=5,点P在AC上运动时,BPAC时,BP有最小值,观察图象可得,BP的最小值为4,即BPAC时BP=4,又勾股定理求得CP=3,因点P从点C运动到点A,根据函数的对称性可得CP=AP=3,所以的面积是=12.15、2【解析】试题分析:若与是同类项,则:,解方程得:=23×(2)=8.8的立方根是2故答案为2考点:2立方根;2合并同类项;3解二元一次方程组;4综合题16、BAD=90° (不唯一)【解析】根据正方形的判定定理添加条件即可.【详解】解:平行四边形 ABCD的对角线AC与BD相交于点O,且ACBD,四边形ABCD是菱形,当BAD=90°时,四边形ABCD为正方形.故答案为:BAD=90°.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角.三、解答题(共8题,共72分)17、 (1)CD=;(2)m= ;(3) n的值为或 【解析】分析:(1)过点作,垂足为点,连接解Rt,得到的长由勾股定理得的长,再由垂径定理即可得到结论; (2)解Rt,得到和Rt中,由勾股定理即可得到结论; (3)成为等腰三角形可分以下几种情况讨论: 当圆心、在弦异侧时,分和当圆心、在弦同侧时,同理可得结论详解:(1)过点作,垂足为点,连接在Rt, 6, 由勾股定理得: ,(2)在Rt,在Rt中,在Rt中,可得: ,解得(3)成为等腰三角形可分以下几种情况: 当圆心、在弦异侧时i),即,由,解得即圆心距等于、的半径的和,就有、外切不合题意舍去ii),由 ,解得:,即 ,解得当圆心、在弦同侧时,同理可得: 是钝角,只能是,即,解得综上所述:n的值为或点睛:本题是圆的综合题考查了圆的有关性质和两圆的位置关系以及解直径三角形解答(3)的关键是要分类讨论18、1【解析】根据特殊角的三角函数值、零指数幂的运算法则、负整数指数幂的运算法则、绝对值的性质进行化简,计算即可【详解】原式=1×+3+11=1【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行另外,有理数的运算律在实数范围内仍然适用19、(1)小张的发现正确;(2)详见解析;(3)A36°;(4)【解析】尝试探究:根据勾股定理计算即可;拓展延伸:(1)由AE2ACEC,推出 ,又AEFC,推出 ,即可解问题;(2)利用相似三角形的性质即可解决问题;(3)如图,过点F作FMAC交AC于点M,根据cosA ,求出AM、AF即可;应用迁移:利用(3)中结论即可解决问题;【详解】解:尝试探究:1;ACB90°,BC1,AC2,AB,ADAE,AE2()262,ACEC2×2()6 ,AE2ACEC,小张的发现正确;拓展延伸:(1)AE2ACEC,AEFC,又CC,ACFFCE;(2)ACFFCE,AFCCEF,又EFFC,CCEF,AFCC,ACAF,AEEF,AAFE,FEC2A,EFFC,C2A,AFCC2A,AFC+C+A180°,A36°;(3)如图,过点F作FMAC交AC于点M,由尝试探究可知AE ,EC,EFFC,由(2)得:ACAF2,ME ,AM ,cosA ;应用迁移:正十边形的中心角等于 36°,且是半径为2的圆内接正十边形,如图,当点A是圆内接正十边形的圆心,AC和AF都是圆的半径,FC是正十边形的边长时,设AFAC2,FCEFAEx,ACFFCE, , , ,半径为2的圆内接正十边形的边长为【点睛】本题考查相似三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用数形结合的思想思考问题,属于中考压轴题20、见解析【解析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值【详解】(1)把,代入得,解得.这个二次函数解析式为.(2)抛物线对称轴为直线,的坐标为,.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式21、 (1)-2,1;(2)x=3;(3)4m.【解析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1),所以或或,;故答案为,1;(2),方程的两边平方,得即或,当时,所以不是原方程的解所以方程的解是;(3)因为四边形是矩形,所以,设,则因为, 两边平方,得整理,得两边平方并整理,得即所以经检验,是方程的解答:的长为【点睛】考查了转化的思想方法,一元二次方程的解法解无理方程是注意到验根解决(3)时,根据勾股定理和绳长,列出方程是关键22、(1)(2)(3) .【解析】(1)由勾股定理求出BP的长, D是边AB的中点,P为AC的中点,所以点E是ABC的重心,然后求得BE的长.(2)过点B作BFCA交CD的延长线于点F,所以,然后可求得EF=8,所以,所以,因为PDAB,D是边AB的中点,在ABC中可求得cosA的值.(3)由,PBD=ABP,证得PBDABP,再证明DPEDCP得到,PD可求.【详解】解:(1)P为AC的中点,AC=8,CP=4,ACB=90°,BC=6,BP=,D是边AB的中点,P为AC的中点,点E是ABC的重心,(2)过点B作BFCA交CD的延长线于点F,BD=DA,FD=DC,BF=AC,CE=2,ED=3,则CD=5,EF=8,,设CP=k,则PA=3k,PDAB,D是边AB的中点,PA=PB=3k,,,(3)ACB=90°,D是边AB的中点,,,,PBD=ABP,PBDABP,BPD=A,A=DCA,DPE=DCP,PDE=CDP,DPEDCP,,DE=3,DC=5,.【点睛】本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键.23、(1);(1)时,取最大值,为.【解析】(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即 可得z=,利用矩形的面积公式即可得出解析式;(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得【详解】解:(1)分别延长DE,FP,与BC的延长线相交于G,H,AF=x,CH=x-4,设AQ=z,PH=BQ=6-z,PHEG,即,化简得z=,y=x=-x1+x (4x10);(1)y=-x1+x=-(x-)1+,当x=dm时,y取最大值,最大值是dm1【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质24、(1)75°(2)见解析【解析】(1)由等边三角形的性质可得ACB60°,BCAC,由旋转的性质可得CFBC,BCF90°,由等腰三角形的性质可求解;(2)由“SAS”可证ECDACD,可得DACE60°ACB,即可证ADBC【详解】解:(1)ABC是等边三角形ACB60°,BCAC等边ABC绕点C顺时针旋转90°得到EFCCFBC,BCF90°,ACCECFACBCF90°,ACB60°ACFBCFACB30°CFA(180°ACF)75°(2)ABC和EFC是等边三角形ACB60°,E60°CD平分ACEACDECDACDECD,CDCD,CACE,ECDACD(SAS)DACE60°DACACBADBC【点睛】本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键