2023届山东省即墨市重点达标名校中考适应性考试数学试题含解析.doc
-
资源ID:87790145
资源大小:534.50KB
全文页数:13页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届山东省即墨市重点达标名校中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1已知点M、N在以AB为直径的圆O上,MON=x°,MAN= y°, 则点(x,y)一定在( )A抛物线上B过原点的直线上C双曲线上D以上说法都不对2为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表则这9名学生每周做家务劳动的时间的众数及中位数分别是()每周做家务的时间(小时)01234人数(人)22311A3,2.5B1,2C3,3D2,232017年,全国参加汉语考试的人数约为6500000,将6500000用科学记数法表示为()A6.5×105 B6.5×106 C6.5×107 D65×1054我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( )ABCD5如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则CEF的周长为( ) A12B16C18D246PM2.5是指大气中直径0.0000025米的颗粒物,将0.0000025用科学记数法表示为()A2.5×107B2.5×106C25×107D0.25×1057如图,O的半径OD弦AB于点C,连结AO并延长交O于点E,连结EC若AB=8,CD=2,则EC的长为()AB8CD8点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,且x1x20x3,则y1、y2、y3的大小关系是( )Ay3y1y2By1y2y3Cy3y2y1Dy2y1y39在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A10B8C5D310如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,若2=40°,则图中1的度数为( )A115°B120°C130°D140°二、填空题(共7小题,每小题3分,满分21分)11分解因式:x2yy_12如图,等边三角形AOB的顶点A的坐标为(4,0),顶点B在反比例函数(x0)的图象上,则k= 13如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为_m. 14桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由_个这样的正方体组成.15用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_16如图,将AOB以O为位似中心,扩大得到COD,其中B(3,0),D(4,0),则AOB与COD的相似比为_17废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量)某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_立方米三、解答题(共7小题,满分69分)18(10分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率19(5分)已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球(1)求从中随机抽取出一个黑球的概率是多少?(2)若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式20(8分)先化简代数式,再从1,0,3中选择一个合适的a的值代入求值21(10分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?22(10分)已知:ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中, 每个小正方形的边长是1个单位长度)画出ABC向下平移4个单位得到的A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出A2BC2,使A2BC2与ABC位似,且位似比为21,并直接写出C2点的坐标及A2BC2的面积23(12分)如图,ABC是O的内接三角形,AB是O的直径,OFAB,交AC于点F,点E在AB的延长线上,射线EM经过点C,且ACE+AFO=180°.求证:EM是O的切线;若A=E,BC=,求阴影部分的面积.(结果保留和根号).24(14分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG6米,GC53米请你根据以上数据,计算舍利塔的高度AB参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由圆周角定理得出MON与MAN的关系,从而得出x与y的关系式,进而可得出答案.【详解】MON与MAN分别是弧MN所对的圆心角与圆周角,MAN=MON, ,点(x,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.2、D【解析】试题解析:表中数据为从小到大排列数据1小时出现了三次最多为众数;1处在第5位为中位数所以本题这组数据的中位数是1,众数是1故选D考点:1.众数;1.中位数.3、B【解析】科学记数法的表示形式为a×10n的形式,其中1|a|<10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数【详解】将6500000用科学记数法表示为:6.5×106.故答案选B.【点睛】本题考查了科学计数法,解题的关键是熟练的掌握科学计数法的表示形式.4、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.5、A【解析】解:四边形ABCD为矩形,AD=BC=10,AB=CD=8,矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,AF=AD=10,EF=DE,在RtABF中,BF=6,CF=BC-BF=10-6=4,CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1故选A6、B【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000 0025=2.5×106;故选B【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定7、D【解析】O的半径OD弦AB于点C,AB=8,AC=AB=1设O的半径为r,则OC=r2,在RtAOC中,AC=1,OC=r2,OA2=AC2+OC2,即r2=12+(r2)2,解得r=2AE=2r=3连接BE,AE是O的直径,ABE=90°在RtABE中,AE=3,AB=8,在RtBCE中,BE=6,BC=1,故选D8、A【解析】作出反比例函数的图象(如图),即可作出判断:31,反比例函数的图象在二、四象限,y随x的增大而增大,且当x1时,y1;当x1时,y1当x1x21x3时,y3y1y2故选A9、B【解析】摸到红球的概率为,解得n=8,故选B10、A【解析】解:把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A处,点B落在点B处,BFE=EFB',B'=B=90°2=40°,CFB'=50°,1+EFB'CFB'=180°,即1+150°=180°,解得:1=115°,故选A二、填空题(共7小题,每小题3分,满分21分)11、y(x+1)(x1)【解析】观察原式x2yy,找到公因式y后,提出公因式后发现x2-1符合平方差公式,利用平方差公式继续分解可得.【详解】解:x2yyy(x21)y(x+1)(x1)故答案为:y(x+1)(x1)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止12、-4.【解析】过点B作BDx轴于点D,因为AOB是等边三角形,点A的坐标为(-4,0)所AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式.【详解】过点B作BDx轴于点D,AOB是等边三角形,点A的坐标为(4,0),AOB=60°,OB=OA=AB=4,OD= OB=2,BD=OBsin60°=4×=2,B(2,2 ),k=2×2 =4【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中13、1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可解:同一时刻物高与影长成正比例设旗杆的高是xm1.6:1.2=x:9x=1即旗杆的高是1米故答案为1考点:相似三角形的应用14、1【解析】主视图、左视图是分别从物体正面、左面看,所得到的图形【详解】易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体故答案为115、【解析】试题分析:,解得r=考点:弧长的计算16、3:1【解析】AOB与COD关于点O成位似图形,AOBCOD,则AOB与COD的相似比为OB:OD=3:1,故答案为3:1 (或)17、3×1【解析】因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:600×50=30 000,用科学记数法表示为3×1立方米故答案为3×1三、解答题(共7小题,满分69分)18、(1)P=;(2)P=.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=; (2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.点睛:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比19、(1).(2).【解析】试题分析:(1)根据取出黑球的概率=黑球的数量÷球的总数量得出答案;(2)根据概率的计算方法得出方程,从求出函数关系式试题解析:(1)取出一个黑球的概率(2)取出一个白球的概率与的函数关系式为:考点:概率20、,1【解析】先通分得到,再根据平方差公式和完全平方公式得到,化简后代入a3,计算即可得到答案.【详解】原式,当a3时(a1,0),原式1【点睛】本题考查代数式的化简、平方差公式和完全平方公式,解题的关键是掌握代数式的化简、平方差公式和完全平方公式.21、 (1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米; (2)设人行道的宽度为x米,根据题意得,(203x)(82x)=56 解得:x=2或x=(不合题意,舍去)答:人行道的宽为2米22、解:(1)如图,A1B1C1即为所求,C1(2,2)(2)如图,A2BC2即为所求,C2(1,0),A2BC2的面积:10【解析】分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点、 的位置,然后顺次连接即可,再根据平面直角坐标系写出点的坐标;(2)延长BA到使A=AB,延长BC到,使C=BC,然后连接A2C2即可,再根据平面直角坐标系写出点的坐标,利用B所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解本题解析:(1)如图,A1B1C1即为所求,C1(2,2)(2)如图,B为所求, (1,0),B 的面积:6×4×2×6×2×4×2×4=24644=2414=10,23、(1)详见解析;(2);【解析】(1)连接OC,根据垂直的定义得到AOF=90°,根据三角形的内角和得到ACE=90°+A,根据等腰三角形的性质得到OCE=90°,得到OCCE,于是得到结论;(2)根据圆周角定理得到ACB=90°,推出ACO=BCE,得到BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论【详解】:(1)连接OC,OFAB,AOF=90°,A+AFO+90°=180°,ACE+AFO=180°,ACE=90°+A,OA=OC,A=ACO,ACE=90°+ACO=ACO+OCE,OCE=90°,OCCE,EM是O的切线;(2)AB是O的直径,ACB=90°,ACO+BCO=BCE+BCO=90°,ACO=BCE,A=E,A=ACO=BCE=E,ABC=BCO+E=2A,A=30°,BOC=60°,BOC是等边三角形,OB=BC=,阴影部分的面积=,【点睛】本题考查了切线的判定,等腰三角形的判定和性质,扇形的面积计算,连接OC 是解题的关键24、55米【解析】由题意可知EDCEBA,FHCFBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.【详解】EDCEBA,FHCFBA,,即,AC=106米,又 ,AB=55米.答:舍利塔的高度AB为55米【点睛】本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题