2023届四川省眉山市东坡区东坡中学中考二模数学试题含解析.doc
-
资源ID:87790299
资源大小:1.22MB
全文页数:23页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届四川省眉山市东坡区东坡中学中考二模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,将ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DEBC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是()ABCD2将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()ABCD3欧几里得的原本记载,形如的方程的图解法是:画,使,再在斜边上截取.则该方程的一个正根是( )A的长B的长C的长D的长47的相反数是( )A7B7CD5某几何体的左视图如图所示,则该几何体不可能是()ABCD6如图,ABC中,AB>AC,CAD为ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是( )ADAE=BBEAC=CCAEBCDDAE=EAC7如图,BCDE,若A=35°,E=60°,则C等于()A60°B35°C25°D20°8如图,在ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,则DE:EC=( )A2:5B2:3C3:5D3:29如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A5元,2元B2元,5元C4.5元,1.5元D5.5元,2.5元10一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字16)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()ABCD11如图,已知ABC中,ABC=45°,F是高AD和BE的交点,CD=4,则线段DF的长度为( )AB4CD12如图,AD为ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()ADC=DEBAB=2DECSCDE=SABCDDEAB二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,在RtABC中,A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠B,使点B的对应点B始终落在边AC上,若MBC为直角三角形,则BM的长为_14对于函数,我们定义(m、n为常数)例如,则已知:若方程有两个相等实数根,则m的值为_15已知x+y8,xy2,则x2y+xy2_16如图,在边长为4的菱形ABCD中,A=60°,M是AD边的中点,点N是AB边上一动点,将AMN沿MN所在的直线翻折得到AMN,连接AC,则线段AC长度的最小值是_17如图,PC是O的直径,PA切O于点P,AO交O于点B;连接BC,若,则_.18抛物线y=x22x+3的对称轴是直线_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)解不等式组,并把解集在数轴上表示出来20(6分)如图,在ABC中,C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F(1)若B=30°,求证:以A,O,D,E为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD,则O的半径为,AD的长为 21(6分)如图,一次函数y=kx+b的图象与反比例函数y= (x0)的图象交于A(2,1),B(,n)两点,直线y=2与y轴交于点C (1)求一次函数与反比例函数的解析式; (2)求ABC的面积.22(8分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取 名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率23(8分)如图所示,点P位于等边的内部,且ACP=CBP(1)BPC的度数为_°;(2)延长BP至点D,使得PD=PC,连接AD,CD依题意,补全图形;证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积24(10分)(1)(2)2+2sin 45°(2)解不等式组,并将其解集在如图所示的数轴上表示出来25(10分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0)点C、D分别在OB、AB边上,DCOA,CB=2(I)如图,将DCB沿射线CB方向平移,得到DCB当点C平移到OB的中点时,求点D的坐标;(II)如图,若边DC与AB的交点为M,边DB与ABB的角平分线交于点N,当BB多大时,四边形MBND为菱形?并说明理由(III)若将DCB绕点B顺时针旋转,得到DCB,连接AD,边DC的中点为P,连接AP,当AP最大时,求点P的坐标及AD的值(直接写出结果即可)26(12分)阅读下列材料:材料一:早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.材料二:以下是某同学根据网上搜集的数据制作的年度中国国家博物馆参观人数及年增长率统计表.年度20132014201520162017参观人数(人次)7 450 0007 630 0007 290 0007 550 0008 060 000年增长率(%)38.72.4-4.53.66.8他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式. 根据以上信息解决下列问题:(1)补全以下两个统计图;(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.27(12分)如图所示,ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90°,EC的延长线交BD于点P(1)把ABC绕点A旋转到图1,BD,CE的关系是 (选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把ABC绕点A旋转,当EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为 ,最大值为 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】利用相似三角形的性质即可判断【详解】设ADx,AEy,DEBC,ADEABC,x9,y12,故选:C【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2、C【解析】严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直故选C【点睛】本题主要考查学生的动手能力及空间想象能力对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现3、B【解析】【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.【解答】用求根公式求得: AD的长就是方程的正根.故选B.【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.4、B【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】7的相反数是7,故选:B.【点睛】此题考查相反数,解题关键在于掌握其定义.5、D【解析】解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图从左往右正方形个数为2,1,1,故选D【点睛】本题考查几何体的三视图6、D【解析】解:根据图中尺规作图的痕迹,可得DAE=B,故A选项正确,AEBC,故C选项正确,EAC=C,故B选项正确,ABAC,CB,CAEDAE,故D选项错误,故选D【点睛】本题考查作图复杂作图;平行线的判定与性质;三角形的外角性质7、C【解析】先根据平行线的性质得出CBE=E=60°,再根据三角形的外角性质求出C的度数即可【详解】BCDE,CBE=E=60°,A=35°,C+A=CBE,C=CBEC=60°35°=25°,故选C【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.8、B【解析】四边形ABCD是平行四边形,ABCDEAB=DEF,AFB=DFEDEFBAF,DE:AB=2:5AB=CD,DE:EC=2:3故选B9、A【解析】可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关系:3本笔记本的费用+2支笔的费用=19元,1本笔记本的费用1支笔的费用=3元,根据等量关系列出方程组,再求解即可【详解】设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:,解得:故1本笔记本的单价为5元,1支笔的单价为2元故选A【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组10、B【解析】直接得出两位数是3的倍数的个数,再利用概率公式求出答案【详解】一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,十位数为3,则两位数是3的倍数的个数为2.得到的两位数是3的倍数的概率为: =.故答案选:B.【点睛】本题考查了概率的知识点,解题的关键是根据题意找出两位数是3的倍数的个数再运用概率公式解答即可.11、B【解析】求出ADBD,根据FBDC90°,CADC90°,推出FBDCAD,根据ASA证FBDCAD,推出CDDF即可【详解】解:ADBC,BEAC,ADB=AEB=ADC=90°,EAF+AFE=90°,FBD+BFD=90°,AFE=BFD,EAF=FBD,ADB=90°,ABC=45°,BAD=45°=ABC,AD=BD,在ADC和BDF中 ,ADCBDF,DF=CD=4,故选:B【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件12、A【解析】根据三角形中位线定理判断即可【详解】AD为ABC的中线,点E为AC边的中点,DC=BC,DE=AB,BC不一定等于AB,DC不一定等于DE,A不一定成立;AB=2DE,B一定成立;SCDE=SABC,C一定成立;DEAB,D一定成立;故选A【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、或1【解析】图1,BMC=90°,B与点A重合,M是BC的中点,所以BM=,图2,当MBC=90°,A=90°,AB=AC,C=45°,所以Rt是等腰直角三角形,所以BM=+1,所以CM+BM=BM+BM=+1,所以BM=1.【详解】请在此输入详解!14、 【解析】分析:根据题目中所给定义先求,再利用根与系数关系求m值.详解:由所给定义知,,若=0,解得m=.点睛:一元二次方程的根的判别式是,=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.>0说明方程有两个不同实数解,=0说明方程有两个相等实数解,<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.15、1【解析】将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值【详解】x+y=8,xy=2,x2y+xy2=xy(x+y)=2×8=1故答案为:1【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式16、 【解析】解:如图所示:MA是定值,AC长度取最小值时,即A在MC上时,过点M作MFDC于点F,在边长为2的菱形ABCD中,A=60°,M为AD中点,2MD=AD=CD=2,FDM=60°,FMD=30°,FD=MD=1,FM=DM×cos30°=,AC=MCMA=故答案为【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A点位置是解题关键17、26°【解析】根据圆周角定理得到AOP=2C=64°,根据切线的性质定理得到APO=90°,根据直角三角形两锐角互余计算即可【详解】由圆周角定理得:AOP=2C=64°PC是O的直径,PA切O于点P,APO=90°,A=90°AOP=90°64°=26°故答案为:26°【点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键18、x=1【解析】把解析式化为顶点式可求得答案【详解】解:y=x2-2x+3=(x-1)2+2,对称轴是直线x=1,故答案为x=1【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、1x1【解析】求不等式组的解集首先要分别解出两个不等式的解集,然后利用口诀“同大取大,同小取小,大小小大中间找,大大小小找不到(”确定不等式组解集的公共部分.【详解】解不等式,得x1,解不等式,得x1,不等式组的解集是1x1不等式组的解集在数轴上表示如下:20、 (1) 见解析;(2)【解析】(1) 先通过证明AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE/OD, 从而证得四边形AODE是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证(2) 利用在RtOBD中,sinB=可得出半径长度,在Rt中BD=,可求得的长,由CD=CBBD可得的长,在中,AD=,即可求出AD长度【详解】解:(1)证明:连接OE、ED、OD,在RtABC中,B=30°,A=60°,OA=OE,AEO是等边三角形,AE=OE=AOOD=OA,AE=ODBC是圆O的切线,OD是半径,ODB=90°,又C=90°ACOD,又AE=OD四边形AODE是平行四边形,OD=OA四边形AODE是菱形(2)在RtABC中,AC=6,AB=10,sinB=,BC=8BC是圆O的切线,OD是半径,ODB=90°,在RtOBD中,sinB=,OB=ODAO+OB=AB=10,OD+OD=10OD=OB=OD=BD=5CD=CBBD=3AD=3【点睛】本题主要考查圆中的计算问题、 菱形以及相似三角形的判定与性质21、(1)y=2x5,;(2)【解析】试题分析:(1)把A坐标代入反比例解析式求出m的值,确定出反比例解析式,再将B坐标代入求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC面积试题解析:(1)把A(2,1)代入反比例解析式得:1=,即m=2,反比例解析式为,把B(,n)代入反比例解析式得:n=4,即B(,4),把A与B坐标代入y=kx+b中得:,解得:k=2,b=5,则一次函数解析式为y=2x5;(2)如图,SABC=考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用22、(1)1;(2)详见解析;(3)750;(4)【解析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图;(3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人)答:共抽取1名学生进行问卷调查;故答案为1(2)足球的人数为:160302436=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°如图所示:(3)3000×0.25=750(人)答:全校学生喜欢足球运动的人数为750人(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确23、(1)120°;(2)作图见解析;证明见解析;(3) .【解析】【分析】(1)根据等边三角形的性质,可知ACB=60°,在BCP中,利用三角形内角和定理即可得;(2)根据题意补全图形即可;证明,根据全等三角形的对应边相等可得,从而可得;(3)如图2,作于点,延长线于点,根据已知可推导得出,由(2)得,根据 即可求得.【详解】(1)三角形ABC是等边三角形,ACB=60°,即ACP+BCP=60°,BCP+CBP+BPC=180°,ACP=CBP,BPC=120°,故答案为120;(2)如图1所示.在等边中,为等边三角形,在和中, ,;(3)如图2,作于点,延长线于点,又由(2)得, .【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质等,熟练掌握相关性质定理、正确添加辅助线是解题的关键.24、(1)45;x2,在数轴上表示见解析【解析】(1)此题涉及乘方、特殊角的三角函数、负整数指数幂和二次根式的化简,首先针对各知识点进行计算,再计算实数的加减即可;(2)首先解出两个不等式的解集,再根据大小小大中间找确定不等式组的解集【详解】解:(1)原式=4+2×2×3=4+6=45;(2),解得:x,解得:x2,不等式组的解集为:x2,在数轴上表示为:【点睛】此题主要考查了解一元一次不等式组,以实数的运算,关键是正确确定两个不等式的解集,掌握特殊角的三角函数值25、()D(3+,3);()当BB'=时,四边形MBND'是菱形,理由见解析;()P()【解析】()如图中,作DHBC于H首先求出点D坐标,再求出CC的长即可解决问题;()当BB'=时,四边形MBND'是菱形首先证明四边形MBND是平行四边形,再证明BB=BC即可解决问题;()在ABP中,由三角形三边关系得,APAB+BP,推出当点A,B,P三点共线时,AP最大.【详解】()如图中,作DHBC于H,AOB是等边三角形,DCOA,DCB=AOB=60°,CDB=A=60°,CDB是等边三角形,CB=2,DHCB,CH=HB=,DH=3,D(6,3),CB=3,CC=23,DD=CC=23,D(3+,3)()当BB'=时,四边形MBND'是菱形,理由:如图中,ABC是等边三角形,ABO=60°,ABB'=180°ABO=120°,BN是ACC'的角平分线,NBB'=ABB'=60°=DCB,D'C'BN,ABBD四边形MBND'是平行四边形,ME'C'=MCE'=60°,NCC'=NC'C=60°,MCB'和NBB'是等边三角形,MC=CE',NC=CC',B'C'=2,四边形MBND'是菱形,BN=BM,BB'=B'C'=;()如图连接BP,在ABP中,由三角形三边关系得,APAB+BP,当点A,B,P三点共线时,AP最大,如图中,在D'BE'中,由P为D'E的中点,得APD'E',PD'=,CP=3,AP=6+3=9,在RtAPD'中,由勾股定理得,AD'=2此时P(,)【点睛】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大26、(1)见解析;(2)答案不唯一,预估理由合理,支撑预估数据即可【解析】分析:(1)根据2015年网络售票占17.33%,2017年8月实现网络售票占比77%,2017年10月2日,首次实现全部网络售票,即可补全图1,根据2016年度中国国家博物馆参观人数及年增长率,即可补全图2;(2)根据近两年平均每年增长385000人次,即可预估2018年中国国家博物馆的参观人数.详解:(1)补全统计图如(2)近两年平均每年增长385000人次,预估2018年中国国家博物馆的参观人数为8445000人次(答案不唯一,预估理由合理,支撑预估数据即可)点睛:本题考查了统计表、折线统计图的应用,关键是正确从统计表中得到正确的信息,折线统计图表示的是事物的变化情况.27、(1)BD,CE的关系是相等;(2)或;(3)1,1【解析】分析:(1)依据ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90°,即可BA=CA,BAD=CAE,DA=EA,进而得到ABDACE,可得出BD=CE;(2)分两种情况:依据PDA=AEC,PCD=ACE,可得PCDACE,即可得到=,进而得到PD=;依据ABD=PBE,BAD=BPE=90°,可得BADBPE,即可得到,进而得出PB=,PD=BD+PB=;(3)以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大在RtPED中,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值详解:(1)BD,CE的关系是相等理由:ABC和ADE是有公共顶点的等腰直角三角形,BAC=DAE=90°,BA=CA,BAD=CAE,DA=EA,ABDACE,BD=CE;故答案为相等(2)作出旋转后的图形,若点C在AD上,如图2所示:EAC=90°,CE=,PDA=AEC,PCD=ACE,PCDACE,PD=;若点B在AE上,如图2所示:BAD=90°,RtABD中,BD=,BE=AEAB=2,ABD=PBE,BAD=BPE=90°,BADBPE,即,解得PB=,PD=BD+PB=+=,故答案为或;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在A下方与A相切时,PD的值最小;当CE在在A右上方与A相切时,PD的值最大如图3所示,分两种情况讨论:在RtPED中,PD=DEsinPED,因此锐角PED的大小直接决定了PD的大小当小三角形旋转到图中ACB的位置时,在RtACE中,CE=4,在RtDAE中,DE=,四边形ACPB是正方形,PC=AB=3,PE=3+4=1,在RtPDE中,PD=,即旋转过程中线段PD的最小值为1;当小三角形旋转到图中AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD的最大值为1故答案为1,1点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题