2023届山东省济南市实验中学中考数学四模试卷含解析.doc
-
资源ID:87790437
资源大小:831.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届山东省济南市实验中学中考数学四模试卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是()A2011年我国的核电发电量占总发电量的比值约为1.5%B2006年我国的总发电量约为25000亿千瓦时C2013年我国的核电发电量占总发电量的比值是2006年的2倍D我国的核电发电量从2008年开始突破1000亿千瓦时2如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()ABCD3下列计算错误的是()A4x32x2=8x5 Ba4a3=aC(x2)5=x10 D(ab)2=a22ab+b24下列说法错误的是( )A必然事件的概率为1B数据1、2、2、3的平均数是2C数据5、2、3、0的极差是8D如果某种游戏活动的中奖率为40%,那么参加这种活动10次必有4次中奖5如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CEx轴交双曲线于点E,连接BE,则BCE的面积为()A5B6C7D86ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )ABE=DFBAE=CFCAF/CEDBAE=DCF7下列命题中假命题是( )A正六边形的外角和等于B位似图形必定相似C样本方差越大,数据波动越小D方程无实数根8下列命题中,真命题是()A如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离9如图,ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则ABO的周长是( )A10B14C20D2210不等式组的解集是()A1x4Bx1或x4C1x4D1x4二、填空题(共7小题,每小题3分,满分21分)11如图,在等边ABC中,AB=4,D是BC的中点,将ABD绕点A旋转后得到ACE,连接DE交AC于点F,则AEF的面积为_12已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是_13若m+=3,则m2+=_14如图,在ABC中,AB5,AC4,BC3,按以下步骤作图:以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;作射线AE;以同样的方法作射线BF,AE交BF于点O,连接OC,则OC_.15如图,中,平分,与相交于点,则的长等于_.16如图,在四边形ABCD中,AC、BD相交于点E,若,则_17如图,每个小正方形边长为1,则ABC边AC上的高BD的长为_三、解答题(共7小题,满分69分)18(10分)计算1419(5分)如图,已知,求证 20(8分)解不等式组,并将它的解集在数轴上表示出来21(10分)如图,已知抛物线(0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。(1)如图1,若ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;(3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED1:4,求的值. 22(10分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接求证:四边形是菱形若,求四边形的面积23(12分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)点E在抛物线的对称轴上,且,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,求点Q的坐标. 24(14分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由折线统计图和条形统计图对各选项逐一判断即可得【详解】解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;B、2006年我国的总发电量约为500÷2.0%25000亿千瓦时,此选项正确;C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;故选:B【点睛】本题考查的是条形统计图和折线统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况2、A【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形故选A【考点】简单组合体的三视图3、B【解析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)1=a1±1ab+b1可巧记为:“首平方,末平方,首末两倍中间放”可得答案【详解】A选项:4x31x1=8x5,故原题计算正确;B选项:a4和a3不是同类项,不能合并,故原题计算错误;C选项:(-x1)5=-x10,故原题计算正确;D选项:(a-b)1=a1-1ab+b1,故原题计算正确;故选:B【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则4、D【解析】试题分析:A概率值反映了事件发生的机会的大小,必然事件是一定发生的事件,所以概率为1,本项正确;B数据1、2、2、3的平均数是=2,本项正确;C这些数据的极差为5(3)=8,故本项正确;D某种游戏活动的中奖率为40%,属于不确定事件,可能中奖,也可能不中奖,故本说法错误,故选D考点:1.概率的意义;2.算术平均数;3.极差;4.随机事件5、C【解析】作辅助线,构建全等三角形:过D作GHx轴,过A作AGGH,过B作BMHC于M,证明AGDDHCCMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论【详解】解:过D作GHx轴,过A作AGGH,过B作BMHC于M,设D(x,),四边形ABCD是正方形,ADCDBC,ADCDCB90°,易得AGDDHCCMB(AAS),AGDHx1,DGBM,GQ1,DQ,DHAGx1,由QG+DQBMDQ+DH得:11x,解得x2,D(2,3),CHDGBM14,AGDH1x1,点E的纵坐标为4,当y4时,x,E(,4),EH2,CECHHE4,SCEBCEBM××47;故选C【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题6、B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,四边形ABCD是平行四边形,OA=OC,OB=OD,BE=DF,OE=OF,四边形AECF是平行四边形,故不符合题意; B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,四边形ABCD是平行四边形,OA=OC,AF/CE,FAO=ECO,又AOF=COE,AOFCOE,AF=CE,AF CE,四边形AECF是平行四边形,故不符合题意; D、如图,四边形ABCD是平行四边形,AB=CD,AB/CD,ABE=CDF,又BAE=DCF,ABECDF,AE=CF,AEB=CFD,AEO=CFO,AE/CF,AE CF,四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.7、C【解析】试题解析:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C考点:命题与定理8、D【解析】根据两圆的位置关系、直线和圆的位置关系判断即可【详解】A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离或内含,A是假命题;B.如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切或内切或相交,B是假命题;C.如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切或相交,C是假命题;D.如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离,D是真命题; 故选:D【点睛】本题考查了两圆的位置关系:设两圆半径分别为R、r,两圆圆心距为d,则当dR+r时两圆外离;当d=R+r时两圆外切;当R-rdR+r(Rr)时两圆相交;当d=R-r(Rr)时两圆内切;当0dR-r(Rr)时两圆内含9、B【解析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案【详解】四边形ABCD是平行四边形,AO=CO,BO=DO,DC=AB=6,AC+BD=16,AO+BO=8,ABO的周长是:1故选B【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解10、D【解析】试题分析:解不等式可得:x1,解不等式可得:x4,则不等式组的解为1x4,故选D二、填空题(共7小题,每小题3分,满分21分)11、【解析】首先,利用等边三角形的性质求得AD=2;然后根据旋转的性质、等边三角形的性质推知ADE为等边三角形,则DE=AD,便可求出EF和AF,从而得到AEF的面积.【详解】解:在等边ABC中,B=60º,AB=4,D是BC的中点,ADBC,BAD=CAD=30º,AD=ABcos30º=4×=2,根据旋转的性质知,EAC=DAB=30º,AD=AE,DAE=EAC+CAD=60º,ADE的等边三角形,DE=AD=2,AEF=60º,EAC=CADEF=DF=,AFDEAF=EFtan60º=×=3,SAEF=EF×AF=××3=.故答案为:.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,熟记各性质并求出ADE是等边三角形是解题的关键12、【解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1),=1,即b2-4ac=-20a,ax2+bx+c=k有两个不相等的实数根,方程ax2+bx+c-k=0的判别式0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)0抛物线开口向下a01-k0k1故答案为k1点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac0时,二次函数y=ax2+bx+c的图象与x轴有两个交点13、7【解析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案详解:把m+=3两边平方得:(m+)2=m2+2=9,则m2+=7,故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键14、【解析】直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案【详解】过点O作ODBC,OGAC,垂足分别为D,G,由题意可得:O是ACB的内心,AB=5,AC=4,BC=3,BC2+AC2=AB2,ABC是直角三角形,ACB=90°,四边形OGCD是正方形,DO=OG=1,CO=故答案为【点睛】此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键15、3【解析】如图,延长CE、DE,分别交AB于G、H,由BAD=ADE=60°可得三角形ADH是等边三角形,根据等腰直角三角形的性质可知CGAB,可求出AG的长,进而可得GH的长,根据含30°角的直角三角形的性质可求出EH的长,根据DE=DH-EH即可得答案.【详解】如图,延长CE、DE,分别交AB于G、H,BAD=ADE=60°,ADH是等边三角形,DH=AD=AH=5,DHA=60°,AC=BC,CE平分ACB,ACB=90°,AB=8,AG=AB=4,CGAB,GH=AH=AG=5-4=1,DHA=60°,GEH=30°,EH=2GH=2DE=DH-EH=5=2=3.故答案为:3【点睛】本题考查等边三角形的判定及性质、等腰直角三角形的性质及含30°角的直角三角形的性质,熟记30°角所对的直角边等于斜边的一半的性质并正确作出辅助线是解题关键.16、【解析】利用相似三角形的性质即可求解;【详解】解: ABCD,AEBCED, , ,故答案为 【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质17、【解析】试题分析:根据网格,利用勾股定理求出AC的长,AB的长,以及AB边上的高,利用三角形面积公式求出三角形ABC面积,而三角形ABC面积可以由AC与BD乘积的一半来求,利用面积法即可求出BD的长:根据勾股定理得:,由网格得:SABC=×2×4=4,且SABC=ACBD=×5BD,×5BD=4,解得:BD=.考点:1.网格型问题;2.勾股定理;3.三角形的面积三、解答题(共7小题,满分69分)18、1【解析】直接利用绝对值的性质以及二次根式的性质分别化简得出答案【详解】原式=14÷+27=116+27=1【点睛】本题考查了实数的运算,解题的关键是熟练掌握运算顺序19、见解析【解析】根据ABD=DCA,ACB=DBC,求证ABC=DCB,然后利用AAS可证明ABCDCB,即可证明结论【详解】证明:ABD=DCA,DBC=ACBABD+DBC=DCA+ACB即ABC=DCB在ABC和DCB中 ABCDCB(ASA)AB=DC【点睛】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证ABCDCB难度不大,属于基础题20、x1,解集表示在数轴上见解析【解析】首先根据不等式的解法求解不等式,然后在数轴上表示出解集【详解】去分母,得:3x2(x1)3,去括号,得:3x2x+23,移项,得:3x2x32,合并同类项,得:x1,将解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式,解题的关键是掌握不等式的解法以及在数轴上表示不等式的解集21、(1);(2)点P的坐标为 ;(3).【解析】(1)利用三角形相似可求AOOB,再由一元二次方程根与系数关系求AOOB构造方程求n;(2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;(3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可【详解】(1)若ABC为直角三角形AOCCOBOC2=AOOB当y=0时,0=x2-x-n由一元二次方程根与系数关系-OAOB=OC2n2=2n解得n=0(舍去)或n=2抛物线解析式为y=;(2)由(1)当=0时解得x1=-1,x2=4OA=1,OB=4B(4,0),C(0,-2)抛物线对称轴为直线x=-设点Q坐标为(,b)由平行四边形性质可知当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)代入y=x2-x-2解得b=,则P点坐标为(,)当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)代入y=x2-x-2解得b=,则P坐标为(-,)综上点P坐标为(,),(-,);(3)设点D坐标为(a,b)AE:ED=1:4则OE=b,OA=aADABAEOBCOOC=nOB=由一元二次方程根与系数关系得, b=a2将点A(-a,0),D(a,a2)代入y=x2-x-n 解得a=6或a=0(舍去)则n= .【点睛】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想22、(1)见解析;(2)S四边形ADOE =.【解析】(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到ODAE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有EAB=BAO.根据矩形的性质有ABCD,根据平行线的性质有BAC=ACD,求出DCA=60°,求出AD=.根据面积公式SADC,即可求解.【详解】(1)证明:矩形ABCD,OA=OB=OC=OD.平行四边形ADOE,ODAE,AE=OD. AE=OB. 四边形AOBE为平行四边形. OA=OB,四边形AOBE为菱形. (2)解:菱形AOBE,EAB=BAO. 矩形ABCD,ABCD. BAC=ACD,ADC=90°. EAB=BAO=DCA. EAO+DCO=180°,DCA=60°. DC=2,AD=. SADC=. S四边形ADOE =.【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.23、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.【解析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.【详解】解:(1)抛物线解析式为,即,顶点P的坐标为;(2)抛物线的对称轴为直线,设,解得,E点坐标为;(3)直线交x轴于F,作MN直线x=2于H,如图,而,设,则,在中,整理得,解得(舍去),Q点的坐标为.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.24、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米(2)10天.【解析】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论【详解】(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据题意得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,x=×40=60,答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×145,解得:m10,答:至少安排甲队工作10天【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式