2023届山东省烟台市龙口市达标名校中考押题数学预测卷含解析.doc
-
资源ID:87790666
资源大小:965.50KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届山东省烟台市龙口市达标名校中考押题数学预测卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )ABCD2如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()AB1CD3对于二次函数,下列说法正确的是( )A当x>0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点4要使式子有意义,的取值范围是( )AB且C. 或D 且5在17月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A3月份B4月份C5月份D6月份6关于x的方程x2+(k24)x+k+1=0的两个根互为相反数,则k值是()A1B±2C2D27已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )A B C D8如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A1B3C5D1或59为了配合 “我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A140元B150元C160元D200元10若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )ABCD11如图,AD为ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()ADC=DEBAB=2DECSCDE=SABCDDEAB12下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A B C D二、填空题:(本大题共6个小题,每小题4分,共24分)13关于x的一元二次方程x22kx+k2k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12x1x2+x22的值是_14设ABC的面积为1,如图,将边BC、AC分别2等分,BE1、AD1相交于点O,AOB的面积记为S1;如图将边BC、AC分别3等分,BE1、AD1相交于点O,AOB的面积记为S2;,依此类推,则Sn可表示为_(用含n的代数式表示,其中n为正整数)15已知a0,那么|2a|可化简为_16口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_17如图,用10 m长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积_m118如图,BD是O的直径,BA是O的弦,过点A的切线交BD延长线于点C,OEAB于E,且AB=AC,若CD=2,则OE的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)化简: 20(6分)如图,在ABC中,C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F(1)若B=30°,求证:以A,O,D,E为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD,则O的半径为,AD的长为 21(6分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A处时,有A'BAB(1)求A到BD的距离;(2)求A到地面的距离22(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°已知山坡AB的坡度i1:,AB10米,AE15米,求这块宣传牌CD的高度(测角器的高度忽略不计,结果精确到0.1米参考数据:1.414,1.732)23(8分)化简:.24(10分)如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线(1)求的值和点的坐标;(2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式;(3)当时,若直线与直线和(2)反比例函数的图象分别交于点,当间距离大于等于2时,求的取值范围25(10分)先化简后求值:已知:x=2,求的值26(12分)某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的问该兴趣小组男生、女生各有多少人?27(12分)平面直角坐标系中(如图),已知抛物线经过点和,与y轴相交于点C,顶点为P.(1)求这条抛物线的表达式和顶点P的坐标;(2)点E在抛物线的对称轴上,且,求点E的坐标;(3)在(2)的条件下,记抛物线的对称轴为直线MN,点Q在直线MN右侧的抛物线上,求点Q的坐标. 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】试题解析:列表如下:共有20种等可能的结果,P(一男一女)=故选B2、D【解析】由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到BAC=30°,求得ACBE,推出C在对角线AH上,得到A,C,H共线,于是得到结论【详解】如图,连接AC交BE于点O,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,AB=BE,四边形AEHB为菱形,AE=AB,AB=AE=BE,ABE是等边三角形,AB=3,AD=,tanCAB=,BAC=30°,ACBE,C在对角线AH上,A,C,H共线,AO=OH=AB=,OC=BC=,COB=OBG=G=90°,四边形OBGM是矩形,OM=BG=BC=,HM=OHOM=,故选D【点睛】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.3、B【解析】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.4、D【解析】根据二次根式和分式有意义的条件计算即可.【详解】解: 有意义,a+20且a0,解得a-2且a0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.5、B【解析】解:各月每斤利润:3月:7.5-4.53元,4月:6-2.53.5元,5月:4.5-22.5元,6月:3-1.51.5元,所以,4月利润最大,故选B6、D【解析】根据一元二次方程根与系数的关系列出方程求解即可【详解】设方程的两根分别为x1,x1,x1+(k1-4)x+k-1=0的两实数根互为相反数,x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,=-40,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,=110,方程有两个不相等的实数根;k=-1故选D【点睛】本题考查的是根与系数的关系x1,x1是一元二次方程ax1+bx+c=0(a0)的两根时,x1+x1= ,x1x1= ,反过来也成立.7、B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: 抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,b0,交点横坐标为1,a+b+c=b,a+c=0,ac0,一次函数y=bx+ac的图象经过第一、三、四象限故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b0,ac0.8、D【解析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用9、B【解析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x10解得:x=150,即:小慧同学不凭卡购书的书价为150元故选B考点:一元一次方程的应用10、D【解析】根据抛物线与x轴有两个不同的交点,根的判别式0,再分a0和a0两种情况对C、D选项讨论即可得解【详解】A、二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、x1x2,=b2-4ac0,故本选项错误;C、若a0,则x1x0x2,若a0,则x0x1x2或x1x2x0,故本选项错误;D、若a0,则x0-x10,x0-x20,所以,(x0-x1)(x0-x2)0,a(x0-x1)(x0-x2)0,若a0,则(x0-x1)与(x0-x2)同号,a(x0-x1)(x0-x2)0,综上所述,a(x0-x1)(x0-x2)0正确,故本选项正确11、A【解析】根据三角形中位线定理判断即可【详解】AD为ABC的中线,点E为AC边的中点,DC=BC,DE=AB,BC不一定等于AB,DC不一定等于DE,A不一定成立;AB=2DE,B一定成立;SCDE=SABC,C一定成立;DEAB,D一定成立;故选A【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键12、C【解析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】【分析】根据根与系数的关系结合x1+x2=x1x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等式,解之即可得出k的取值范围,从而可确定k的值【详解】x22kx+k2k=0的两个实数根分别是x1、x2,x1+x2=2k,x1x2=k2k,x12+x22=1,(x1+x2)2-2x1x2=1,(2k)22(k2k)=1,2k2+2k1=0,k2+k2=0,k=2或1,=(2k)21×1×(k2k)0,k0,k=1,x1x2=k2k=0,x12x1x2+x22=10=1,故答案为:1【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式0”是解题的关键14、【解析】试题解析:如图,连接D1E1,设AD1、BE1交于点M,AE1:AC=1:(n+1),SABE1:SABC=1:(n+1),SABE1=,SABM:SABE1=(n+1):(2n+1),SABM:=(n+1):(2n+1),Sn=故答案为15、3a【解析】根据二次根式的性质和绝对值的定义解答【详解】a0,|2a|a2a|3a|3a【点睛】本题主要考查了根据二次根式的意义化简二次根式规律总结:当a0时,a;当a0时,a解题关键是要判断绝对值符号和根号下代数式的正负再去掉符号16、【解析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,从中随意摸出两个球的概率=;故答案为:.【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比17、2【解析】设与墙平行的一边长为xm,则另一面为 ,其面积=,最大面积为 ;即最大面积是2m1故答案是2【点睛】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单18、【解析】连接OA,所以OAC90°,因为ABAC,所以BC,根据圆周角定理可知AOD2B2C,故可求出B和C的度数,在RtOAC中,求出OA的值,再在RtOAE中,求出OE的值,得到答案.【详解】连接OA,由题意可知OAC90°,ABAC,BC,根据圆周角定理可知AOD2B2C,OAC90°CAOD90°,C2C90°,故C30°B,在RtOAC中,sinC,OC2OA,OAOD,ODCD2OA,CDOA2,OBOA,OAEB30°,在RtOAE中,sinOAE,OA2OE,OEOA,故答案为.【点睛】本题主要考查了圆周角定理,角的转换,以及在直角三角形中的三角函数的运用,解本题的要点在于求出OA的值,从而利用直角三角形的三角函数的运用求出答案.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、x+2【解析】先把括号里的分式通分,化简,再计算除法.【详解】解:原式= =x+2【点睛】此题重点考察学生对分式的化简的应用,掌握通分和约分是解题的关键.20、 (1) 见解析;(2)【解析】(1) 先通过证明AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE/OD, 从而证得四边形AODE是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证(2) 利用在RtOBD中,sinB=可得出半径长度,在Rt中BD=,可求得的长,由CD=CBBD可得的长,在中,AD=,即可求出AD长度【详解】解:(1)证明:连接OE、ED、OD,在RtABC中,B=30°,A=60°,OA=OE,AEO是等边三角形,AE=OE=AOOD=OA,AE=ODBC是圆O的切线,OD是半径,ODB=90°,又C=90°ACOD,又AE=OD四边形AODE是平行四边形,OD=OA四边形AODE是菱形(2)在RtABC中,AC=6,AB=10,sinB=,BC=8BC是圆O的切线,OD是半径,ODB=90°,在RtOBD中,sinB=,OB=ODAO+OB=AB=10,OD+OD=10OD=OB=OD=BD=5CD=CBBD=3AD=3【点睛】本题主要考查圆中的计算问题、 菱形以及相似三角形的判定与性质21、(1)A'到BD的距离是1.2m;(2)A'到地面的距离是1m【解析】(1)如图2,作A'FBD,垂足为F根据同角的余角相等证得2=3;再利用AAS证明ACBBFA',根据全等三角形的性质即可得A'F=BC,根据BC=BDCD求得BC的长,即可得A'F的长,从而求得A'到BD的距离;(2)作A'HDE,垂足为H,可证得A'H=FD,根据A'H=BDBF求得A'H的长,从而求得A'到地面的距离.【详解】(1)如图2,作A'FBD,垂足为FACBD,ACB=A'FB=90°;在RtA'FB中,1+3=90°; 又A'BAB,1+2=90°,2=3;在ACB和BFA'中,ACBBFA'(AAS);A'F=BC,ACDE且CDAC,AEDE,CD=AE=1.8;BC=BDCD=31.8=1.2,A'F=1.2,即A'到BD的距离是1.2m (2)由(1)知:ACBBFA',BF=AC=2m,作A'HDE,垂足为HA'FDE,A'H=FD,A'H=BDBF=32=1,即A'到地面的距离是1m【点睛】本题考查了全等三角形的判定与性质的应用,作出辅助线,证明ACBBFA'是解决问题的关键.22、2.7米【解析】解:作BFDE于点F,BGAE于点G在RtADE中tanADE=,DE="AE" ·tanADE=15山坡AB的坡度i=1:,AB=10BG=5,AG=,EF=BG=5,BF=AG+AE=+15CBF=45°CF=BF=+15CD=CF+EFDE=20102010×1.732=2.682.7答:这块宣传牌CD的高度为2.7米23、【解析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果【详解】解:原式24、(1),;(2);的取值范围是:【解析】(1)把代入得出的值,进而得出点坐标;(2)当时,将代入,进而得出的值,求出点坐标得出反比例函数的解析式;(3)可得,当向下运动但是不超过轴时,符合要求,进而得出的取值范围【详解】解:(1)直线: 经过点,;(2)当时,将代入,得,代入得,;(3)当时,即,而,如图,当向下运动但是不超过轴时,符合要求,的取值范围是:【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强25、 【解析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得【详解】解:原式=1(÷)=1=1=,当x=2时,原式=【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则26、男生有12人,女生有21人.【解析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×=男生的人数 ,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:,解得:答:该兴趣小组男生有12人,女生有21人【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.27、(1),顶点P的坐标为;(2)E点坐标为;(3)Q点的坐标为.【解析】(1)利用交点式写出抛物线解析式,把一般式配成顶点式得到顶点P的坐标;(2)设,根据两点间的距离公式,利用得到,然后解方程求出t即可得到E点坐标;(3)直线交轴于,作于,如图,利用得到,设,则,再在中利用正切的定义得到,即,然后解方程求出m即可得到Q点坐标.【详解】解:(1)抛物线解析式为,即,顶点P的坐标为;(2)抛物线的对称轴为直线,设,解得,E点坐标为;(3)直线交x轴于F,作MN直线x=2于H,如图,而,设,则,在中,整理得,解得(舍去),Q点的坐标为.【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和锐角三角函数的定义;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式.