欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023届内蒙古赤峰市宁城县重点中学中考猜题数学试卷含解析.doc

    • 资源ID:87790706       资源大小:807.50KB        全文页数:17页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023届内蒙古赤峰市宁城县重点中学中考猜题数学试卷含解析.doc

    2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1设点和是反比例函数图象上的两个点,当时,则一次函数的图象不经过的象限是A第一象限B第二象限C第三象限D第四象限2中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )ABCD3某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )ABCD4世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极加献爱心捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A20、20B30、20C30、30D20、305在ABC中,C90°,那么B的度数为( )A60°B45°C30°D30°或60°6如图,在4×4的正方形网格中,每个小正方形的边长都为1,AOB的三个顶点都在格点上,现将AOB绕点O逆时针旋转90°后得到对应的COD,则点A经过的路径弧AC的长为()ABC2D37下列运算正确的是()Aa2a3=a6 Ba3+a2=a5 C(a2)4=a8 Da3a2=a8满足不等式组的整数解是()A2B1C0D19如图,圆弧形拱桥的跨径米,拱高米,则拱桥的半径为( )米ABCD10下列各数是不等式组的解是()A0BC2D3二、填空题(共7小题,每小题3分,满分21分)11如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_12小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_13在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是_.14已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2_S乙2(填“”、“=”、“”)15若关于的一元二次方程有两个不相等的实数根,则的取值范围为_.16四边形ABCD中,向量_.17已知关于x的一元二次方程(k5)x22x+2=0有实根,则k的取值范围为_三、解答题(共7小题,满分69分)18(10分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?19(5分)如图,梯形ABCD中,ADBC,DCBC,且B=45°,AD=DC=1,点M为边BC上一动点,联结AM并延长交射线DC于点F,作FAE=45°交射线BC于点E、交边DCN于点N,联结EF(1)当CM:CB=1:4时,求CF的长(2)设CM=x,CE=y,求y关于x的函数关系式,并写出定义域(3)当ABMEFN时,求CM的长20(8分)如图,AB是O的直径,弧CDAB,垂足为H,P为弧AD上一点,连接PA、PB,PB交CD于E(1)如图(1)连接PC、CB,求证:BCP=PED;(2)如图(2)过点P作O的切线交CD的延长线于点E,过点A向PF引垂线,垂足为G,求证:APG=F;(3)如图(3)在图(2)的条件下,连接PH,若PH=PF,3PF=5PG,BE=2,求O的直径AB21(10分)如图,在 RtABC 中,C=90°,AC=3,BC=4,ABC 的平分线交边 AC于点 D,延长 BD 至点 E,且BD=2DE,连接 AE.(1)求线段 CD 的长;(2)求ADE 的面积.22(10分)请你仅用无刻度的直尺在下面的图中作出ABC 的边 AB 上的高 CD如图,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC、AC 分别交于点 E、F如图,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E23(12分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项)为了解学生喜爱哪种社团活动,学校做了一次抽样调查根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?24(14分)如图,已知O,请用尺规做O的内接正四边形ABCD,(保留作图痕迹,不写做法)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】点和是反比例函数图象上的两个点,当1时,即y随x增大而增大,根据反比例函数图象与系数的关系:当时函数图象的每一支上,y随x的增大而减小;当时,函数图象的每一支上,y随x的增大而增大故k1根据一次函数图象与系数的关系:一次函数的图象有四种情况:当,时,函数的图象经过第一、二、三象限;当,时,函数的图象经过第一、三、四象限;当,时,函数的图象经过第一、二、四象限;当,时,函数的图象经过第二、三、四象限因此,一次函数的,故它的图象经过第二、三、四象限,不经过第一象限故选A2、D【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:74300亿=7.43×1012,故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】,故选:A【点睛】本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定4、C【解析】分析:由表提供的信息可知,一组数据的众数是这组数中出现次数最多的数,而中位数则是将这组数据从小到大(或从大到小)依次排列时,处在最中间位置的数,据此可知这组数据的众数,中位数详解:根据右图提供的信息,捐款金额的众数和中位数分别是30,30.故选C.点睛:考查众数和中位数的概念,熟记概念是解题的关键.5、C【解析】根据特殊角的三角函数值可知A=60°,再根据直角三角形中两锐角互余求出B的值即可.【详解】解:,A=60°.C90°,B=90°-60°=30°.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.6、A【解析】根据旋转的性质和弧长公式解答即可【详解】解:将AOB绕点O逆时针旋转90°后得到对应的COD,AOC90°,OC3,点A经过的路径弧AC的长= ,故选:A【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答7、C【解析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘进行计算即可【详解】A、a2a3=a5,故原题计算错误;B、a3和a2不是同类项,不能合并,故原题计算错误;C、(a2)4=a8,故原题计算正确;D、a3和a2不是同类项,不能合并,故原题计算错误;故选:C【点睛】此题主要考查了幂的乘方、同底数幂的乘法,以及合并同类项,关键是掌握计算法则8、C【解析】先求出每个不等式的解集,再根据不等式的解集求出不等式组的解集即可【详解】 解不等式得:x0.5,解不等式得:x-1,不等式组的解集为-1x0.5,不等式组的整数解为0,故选C【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集找出不等式组的解集是解此题的关键9、A【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD所在的直线上,设圆心是O连接OA根据垂径定理和勾股定理求解得AD=6设圆的半径是r, 根据勾股定理, 得r2=36+(r4)2,解得r=6.5考点:垂径定理的应用10、D【解析】求出不等式组的解集,判断即可【详解】,由得:x-1,由得:x2,则不等式组的解集为x2,即3是不等式组的解,故选D【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键二、填空题(共7小题,每小题3分,满分21分)11、 【解析】设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,A=D=90°由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在RtDEF根据勾股定理列出关于x的方程即可解决问题【详解】设CE=x四边形ABCD是矩形,AD=BC=5,CD=AB=3,A=D=90°将BCE沿BE折叠,使点C恰好落在AD边上的点F处,BF=BC=5,EF=CE=x,DE=CD-CE=3-x在RtABF中,由勾股定理得:AF2=52-32=16,AF=4,DF=5-4=1在RtDEF中,由勾股定理得:EF2=DE2+DF2,即x2=(3-x)2+12,解得:x=,故答案为12、0.7【解析】用通话时间不足10分钟的通话次数除以通话的总次数即可得【详解】由图可知:小明家3月份通话总次数为20+15+10+5=50(次);其中通话不足10分钟的次数为20+15=35(次),通话时间不足10分钟的通话次数的频率是35÷50=0.7.故答案为0.7.13、12【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可【详解】摸到红球的频率稳定在0.25, 解得:a=12故答案为:12【点睛】此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率14、【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:=4,S甲2=×(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2=,乙组的平均数为: =4,S乙2=×(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2=,S甲2S乙2.故答案为:>.【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.15、.【解析】根据判别式的意义得到,然后解不等式即可.【详解】解:关于的一元二次方程有两个不相等的实数根,解得:,故答案为:.【点睛】此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.16、【解析】分析:根据“向量运算”的三角形法则进行计算即可.详解:如下图所示,由向量运算的三角形法则可得: =.故答案为.点睛:理解向量运算的三角形法则是正确解答本题的关键.17、【解析】若一元二次方程有实根,则根的判别式=b2-4ac0,且k-10,建立关于k的不等式组,求出k的取值范围【详解】解:方程有两个实数根,=b2-4ac=(-2)2-4×2×(k-1)=44-8k0,且k-10,解得:k且k1,故答案为k且k1【点睛】此题考查根的判别式问题,总结:一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根三、解答题(共7小题,满分69分)18、(1)甲、乙两种套房每套提升费用为25、1万元;(2)甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【解析】(1)设甲种套房每套提升费用为x万元,根据题意建立方程求出其解即可;(2)设甲种套房提升m套,那么乙种套房提升(80-m)套,根据条件建立不等式组求出其解就可以求出提升方案,再表示出总费用与m之间的函数关系式,根据一次函数的性质就可以求出结论.【详解】(1)设乙种套房提升费用为x万元,则甲种套房提升费用为(x3)万元,则,解得x=1经检验:x=1是分式方程的解,答:甲、乙两种套房每套提升费用为25、1万元;(2)设甲种套房提升a套,则乙种套房提升(80a)套,则209025a+1(80a)2096,解得48a2共3种方案,分别为:方案一:甲种套房提升48套,乙种套房提升32套方案二:甲种套房提升49套,乙种套房提升31套,方案三:甲种套房提升2套,乙种套房提升30套设提升两种套房所需要的费用为y万元,则y=25a+1(80a)=3a+2240,k=3,当a取最大值2时,即方案三:甲种套房提升2套,乙种套房提升30套时,y最小值为2090万元【点睛】本题考查了一次函数的性质的运用,列分式方程解实际问题的运用,列一元一次不等式组解实际问题的运用解答时建立方程求出甲,乙两种套房每套提升费用是关键,是解答第二问的必要过程19、 (1) CF=1;(2)y=,0x1;(3)CM=2【解析】(1)如图1中,作AHBC于H首先证明四边形AHCD是正方形,求出BC、MC的长,利用平行线分线段成比例定理即可解决问题;(2)在RtAEH中,AE2=AH2+EH2=12+(1+y)2,由EAMEBA,可得,推出AE2=EMEB,由此构建函数关系式即可解决问题;(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG想办法证明CM=CN,MN=DN+HM即可解决问题;【详解】解:(1)如图1中,作AHBC于HCDBC,ADBC,BCD=D=AHC=90°,四边形AHCD是矩形,AD=DC=1,四边形AHCD是正方形,AH=CH=CD=1,B=45°,AH=BH=1,BC=2,CM=BC=,CMAD,=,=,CF=1(2)如图1中,在RtAEH中,AE2=AH2+EH2=12+(1+y)2,AEM=AEB,EAM=B,EAMEBA,=,AE2=EMEB,1+(1+y)2=(x+y)(y+2),y=,22x0,0x1(3)如图2中,作AHBC于H,连接MN,在HB上取一点G,使得HG=DN,连接AG则ADNAHG,MANMAG,MN=MG=HM+GH=HM+DN,ABMEFN,EFN=B=45°,CF=CE,四边形AHCD是正方形,CH=CD=AH=AD,EH=DF,AHE=D=90°,AHEADF,AEH=AFD,AEH=DAN,AFD=HAM,HAM=DAN,ADNAHM,DN=HM,设DN=HM=x,则MN=2x,CN=CM=x,x+x=1,x=1,CM=2【点睛】本题考查了正方形的判定与性质,平行线分线段成比例定理,勾股定理,相似三角形的判定与性质,全等三角形的判定与性质.熟练运用平行线分线段成比例定理是解(1)的关键;证明EAMEBA是解(2)的关键;综合运用全等三角形的判定与性质是解(3)的关键.20、(1)见解析;(2)见解析;(3)AB=1【解析】(1)由垂径定理得出CPB=BCD,根据BCP=BCD+PCD=CPB+PCD=PED即可得证;(2)连接OP,知OP=OB,先证FPE=FEP得F+2FPE=180°,再由APG+FPE=90得2APG+2FPE=180°,据此可得2APG=F,据此即可得证;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF,先证PAE=F,由tanPAE=tanF得,再证GAP=MPE,由sinGAP=sinMPE得,从而得出,即MF=GP,由3PF=5PG即,可设PG=3k,得PF=5k、MF=PG=3k、PM=2k,由FPE=PEF知PF=EF=5k、EM=4k及PE=2k、AP=k,证PEM=ABP得BP=3k,继而可得BE=k=2,据此求得k=2,从而得出AP、BP的长,利用勾股定理可得答案【详解】证明:(1)AB是O的直径且ABCD,CPB=BCD,BCP=BCD+PCD=CPB+PCD=PED,BCP=PED;(2)连接OP,则OP=OB,OPB=OBP,PF是O的切线,OPPF,则OPF=90°,FPE=90°OPE,PEF=HEB=90°OBP,FPE=FEP,AB是O的直径,APB=90°,APG+FPE=90°,2APG+2FPE=180°,F+FPE+PEF=180°,F+2FPE=180°2APG=F,APG= F;(3)连接AE,取AE中点N,连接HN、PN,过点E作EMPF于M,由(2)知APB=AHE=90°,AN=EN,A、H、E、P四点共圆,PAE=PHF,PH=PF,PHF=F,PAE=F,tanPAE=tanF,由(2)知APB=G=PME=90°,GAP=MPE,sinGAP=sinMPE,则,MF=GP,3PF=5PG,设PG=3k,则PF=5k,MF=PG=3k,PM=2k由(2)知FPE=PEF,PF=EF=5k,则EM=4k,tanPEM=,tanF=,tanPAE=,PE=,AP=k,APG+EPM=EPM+PEM=90°,APG=PEM,APG+OPA=ABP+BAP=90°,且OAP=OPA,APG=ABP,PEM=ABP,则tanABP=tanPEM,即,则BP=3k,BE=k=2,则k=2,AP=3、BP=6,根据勾股定理得,AB=1【点睛】本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、四点共圆条件、相似三角形的判定与性质、三角函数的应用等知识点21、(1);(2).【解析】分析:(1)过点D作DHAB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;(2)根据三角形的面积公式计算详解:(1)过点D作DHAB,垂足为点HBD平分ABC,C=90°,DH=DC=x,则AD=3xC=90°,AC=3,BC=4,AB=1,即CD=; (2)BD=2DE, 点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键22、(1)详见解析;(2)详见解析.【解析】(1)连接AE、BF,找到ABC的高线的交点,据此可得CD;(2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得【详解】(1)如图所示,CD 即为所求;(2)如图,CD 即为所求【点睛】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质23、(1)200;(2)108°;(3)答案见解析;(4)600【解析】试题分析:(1)根据体育人数80人,占40%,可以求出总人数(2)根据圆心角=百分比×360°即可解决问题(3)求出艺术类、其它类社团人数,即可画出条形图(4)用样本百分比估计总体百分比即可解决问题试题解析:(1)80÷40%=200(人)         此次共调查200人        (2)×360°=108°文学社团在扇形统计图中所占圆心角的度数为108°        (3)补全如图,(4)1500×40%=600(人)         估计该校喜欢体育类社团的学生有600人【点睛】此题主要考查了条形图与统计表以及扇形图的综合应用,由条形图与扇形图结合得出调查的总人数是解决问题的关键,学会用样本估计总体的思想,属于中考常考题型24、见解析【解析】根据内接正四边形的作图方法画出图,保留作图痕迹即可.【详解】任作一条直径,再作该直径的中垂线,顺次连接圆上的四点即可.【点睛】此题重点考察学生对圆内接正四边形作图的应用,掌握圆内接正四边形的作图方法是解题的关键.

    注意事项

    本文(2023届内蒙古赤峰市宁城县重点中学中考猜题数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开