欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2023届安徽省合肥45中学中考数学四模试卷含解析.doc

    • 资源ID:87791704       资源大小:956KB        全文页数:21页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023届安徽省合肥45中学中考数学四模试卷含解析.doc

    2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1在下面的四个几何体中,左视图与主视图不相同的几何体是()ABCD2已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30°B60°C30°或150°D60°或120°3如图是二次函数yax2bxc(a0)图象的一部分,对称轴为直线x,且经过点(2,0),下列说法:abc0;ab0;4a2bc0;若(2,y1),(,y2)是抛物线上的两点,则y1y2.其中说法正确的有( )ABCD4将弧长为2cm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是()A cmB2 cmC2cmD cm5计算 的结果是( )Aa2B-a2Ca4D-a46已知二次函数yax2+bx+c(a0)的图象如图所示,则下列结论: abc0; 2ab0; b24ac0; 9a+3b+c0; c+8a0.正确的结论有().A1个B2个C3个D4个7在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A10B8C5D38如图所示的几何体,它的左视图是( )ABCD9如图,PB切O于点B,PO交O于点E,延长PO交O于点A,连结AB,O的半径ODAB于点C,BP=6,P=30°,则CD的长度是()ABCD210如图,在四边形ABCD中,A+D=,ABC的平分线与BCD的平分线交于点P,则P=() A90°-B90°+ CD360°-二、填空题(共7小题,每小题3分,满分21分)11计算的结果等于_12如图,直线ab,BAC的顶点A在直线a上,且BAC100°若134°,则2_°13如图,中,的面积为,为边上一动点(不与,重合),将和分别沿直线,翻折得到和,那么的面积的最小值为_14计算(a3)2÷(a2)3的结果等于_15使分式的值为0,这时x=_16某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_ 甲乙丙丁 7887s211.20.91.817如图,1,2是四边形ABCD的两个外角,且1+2210°,则A+D_度.三、解答题(共7小题,满分69分)18(10分)在ABC中,AB=AC,BAC=,点P是ABC内一点,且PAC+PCA=,连接PB,试探究PA、PB、PC满足的等量关系(1)当=60°时,将ABP绕点A逆时针旋转60°得到ACP,连接PP,如图1所示由ABPACP可以证得APP是等边三角形,再由PAC+PCA=30°可得APC的大小为 度,进而得到CPP是直角三角形,这样可以得到PA、PB、PC满足的等量关系为 ;(2)如图2,当=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为 19(5分)如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.求证:四边形是平行四边形.若,则在点的运动过程中:当_时,四边形是矩形;当_时,四边形是菱形.20(8分)如图,在ABC中,C=90°,BC4,AC1点P是斜边AB上一点,过点P作PMAB交边AC或BC于点M又过点P作AC的平行线,与过点M的PM的垂线交于点N设边APx,PMN与ABC重合部分图形的周长为y(1)AB (2)当点N在边BC上时,x (1)求y与x之间的函数关系式(4)在点N位于BC上方的条件下,直接写出过点N与ABC一个顶点的直线平分ABC面积时x的值21(10分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 ;以点B为位似中心,在网格内画出A2B2C2,使A2B2C2与ABC位似,且位似比为2:1,点C2的坐标是 ;A2B2C2的面积是 平方单位22(10分)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在ABC中,点O在线段BC上,BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的长经过社团成员讨论发现,过点B作BDAC,交AO的延长线于点D,通过构造ABD就可以解决问题(如图2)请回答:ADB= °,AB= 请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,ACAD,AO=,ABC=ACB=75°,BO:OD=1:3,求DC的长23(12分)如图,在平行四边形ABCD中,点E、F分别是BC、AD的中点(1)求证:;(2)当时,求四边形AECF的面积24(14分)计算:+( )1+|1|4sin45°参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2、D【解析】【分析】由图可知,OA=10,OD=1根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】由图可知,OA=10,OD=1,在RtOAD中,OA=10,OD=1,AD=,tan1=,1=60°,同理可得2=60°,AOB=1+2=60°+60°=120°,C=60°,E=180°-60°=120°,即弦AB所对的圆周角的度数是60°或120°,故选D【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.3、D【解析】根据图象得出a<0, a+b=0,c>0,即可判断;把x=2代入抛物线的解析式即可判断,根据(2,y1),(,y2)到对称轴的距离即可判断.【详解】二次函数的图象的开口向下,a<0,二次函数的图象y轴的交点在y轴的正半轴上,c>0,二次函数图象的对称轴是直线x=,a=-b,b>0,abc<0,故正确;a=-b, a+b=0,故正确;把x=2代入抛物线的解析式得,4a+2b+c=0,故错误; ,故正确;故选D.【点睛】本题考查了二次函数的图象与系数的关系的应用,题目比较典型,主要考查学生的理解能力和辨析能力.4、B【解析】由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.【详解】解:设圆锥母线长为Rcm,则2=,解得R=3cm;设圆锥底面半径为rcm,则2=2r,解得r=1cm.由勾股定理可得圆锥的高为=2cm.故选择B.【点睛】本题考查了圆锥的概念和弧长的计算.5、D【解析】直接利用同底数幂的乘法运算法则计算得出答案【详解】解:,故选D【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键6、C【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线开口向下,得:a0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b0;抛物线交y轴于正半轴,得:c0.abc0, 正确;2a+b=0,正确;由图知:抛物线与x轴有两个不同的交点,则=b2-4ac0,故错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故错误;观察图象得当x=-2时,y0,即4a-2b+c0b=-2a,4a+4a+c0即8a+c0,故正确.正确的结论有,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用7、B【解析】摸到红球的概率为,解得n=8,故选B8、A【解析】从左面观察几何体,能够看到的线用实线,看不到的线用虚线【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选:A【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键9、C【解析】连接OB,根据切线的性质与三角函数得到POB=60°,OB=OD=2,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.【详解】解:如图,连接OB,PB切O于点B,OBP=90°,BP=6,P=30°,POB=60°,OD=OB=BPtan30°=6×=2,OA=OB,OAB=OBA=30°,ODAB,OCB=90°,OBC=30°,则OC=OB=,CD=.故选:C【点睛】本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.10、C【解析】试题分析:四边形ABCD中,ABC+BCD=360°(A+D)=360°,PB和PC分别为ABC、BCD的平分线,PBC+PCB=(ABC+BCD)=(360°)=180°,则P=180°(PBC+PCB)=180°(180°)=故选C考点:1.多边形内角与外角2.三角形内角和定理二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据完全平方公式进行展开,然后再进行同类项合并即可.【详解】解: .故填.【点睛】主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式.12、46【解析】试卷分析:根据平行线的性质和平角的定义即可得到结论解:直线ab,3=1=34°,BAC=100°,2=180°34°100°=46°,故答案为46°.13、4.【解析】过E作EGAF,交FA的延长线于G,由折叠可得EAG30°,而当ADBC时,AD最短,依据BC7,ABC的面积为14,即可得到当ADBC时,AD4AEAF,进而得到AEF的面积最小值为:AF×EG×4×24.【详解】解:如图,过E作EGAF,交FA的延长线于G,由折叠可得,AFAEAD,BAEBAD,DACFAC,BAC75°,EAF150°,EAG30°,EGAEAD,当ADBC时,AD最短,BC7,ABC的面积为14,当ADBC时, 即:,.AEF的面积最小值为:AF×EG×4×24,故答案为:4.【点睛】本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等14、1【解析】根据幂的乘方, 底数不变, 指数相乘; 同底数幂的除法, 底数不变, 指数相减进行计算即可.【详解】解:原式=【点睛】本题主要考查幂的乘方和同底数幂的除法,熟记法则是解决本题的关键, 在计算中不要与其他法则相混淆. 幂的乘方, 底数不变,指数相乘; 同底数幂的除法, 底数不变, 指数相减.15、1【解析】试题分析:根据题意可知这是分式方程,0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法16、丙【解析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组故答案为丙【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了平均数的意义17、210.【解析】利用邻补角的定义求出ABC+BCD,再利用四边形内角和定理求得A+D.【详解】1+2210°,ABC+BCD180°×2210°150°,A+D360°150°210°.故答案为:210.【点睛】本题考查了四边形的内角和定理以及邻补角的定义,利用邻补角的定义求出ABC+BCD是关键.三、解答题(共7小题,满分69分)18、(1)150,(1)证明见解析(3) 【解析】(1)根据旋转变换的性质得到PAP为等边三角形,得到PPC90°,根据勾股定理解答即可;(1)如图1,作将ABP绕点A逆时针旋转110°得到ACP,连接PP,作ADPP于D,根据余弦的定义得到PPPA,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可试题解析:【详解】解:(1)ABPACP,APAP,由旋转变换的性质可知,PAP60°,PCPB,PAP为等边三角形,APP60°,PACPCA×60° 30°,APC150°,PPC90°,PP1PC1PC1,PA1PC1PB1,故答案为150,PA1PC1PB1;(1)如图,作°,使,连接,过点A作AD于D点°,即,ABAC,. ,° AD,°.在Rt中,.°,°.°在Rt中,.;(3)如图1,与(1)的方法类似,作将ABP绕点A逆时针旋转得到ACP,连接PP,作ADPP于D,由旋转变换的性质可知,PAP,PCPB,APP90°,PACPCA,APC180°,PPC(180°)(90°)90°,PP1PC1PC1,APP90°,PDPAcos(90°)PAsin,PP1PAsin,4PA1sin1PC1PB1,故答案为4PA1sin1PC1PB1【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键19、 (1)、证明过程见解析;(2)、2;、1【解析】(1)、首先证明BEF和DCF全等,从而得出DC=BE,结合DC和AB平行得出平行四边形;(2)、根据矩形得出CEB=90°,结合ABC=120°得出CBE=60°,根据直角三角形的性质得出答案;、根据菱形的性质以及ABC=120°得出CBE是等边三角形,从而得出答案【详解】(1)、证明:ABCD,CDF=FEB,DCF=EBF,点F是BC的中点,BF=CF,在DCF和EBF中,CDF=FEB,DCF=EBF,FC=BF,EBFDCF(AAS), DC=BE, 四边形BECD是平行四边形;(2)、BE=2;当四边形BECD是矩形时,CEB=90°,ABC=120°,CBE=60°;ECB=30°,BE=BC=2,BE=1,四边形BECD是菱形时,BE=EC,ABC=120°,CBE=60°,CBE是等边三角形,BE=BC=1【点睛】本题主要考查的是平行四边形的性质以及矩形、菱形的判定定理,属于中等难度的题型理解平行四边形的判定定理以及矩形和菱形的性质是解决这个问题的关键20、(1)2;(2);(1)详见解析;(4)满足条件的x的值为【解析】(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.【详解】解:(1)在中,,故答案为2(2)如图1中,四边形PAMN是平行四边形, 当点在上时,(1)当时,如图1, 当时,如图2, y当时,如图1,(4)如图4中,当点是中点时,满足条件 .如图2中,当点是中点时,满足条件 .综上所述,满足条件的x的值为或【点睛】此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.21、(1)(2,2);(2)(1,0);(3)1【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出A2B2C2的面积试题解析:(1)如图所示:C1(2,2);故答案为(2,2);(2)如图所示:C2(1,0);故答案为(1,0);(3)=20,=20,=40,A2B2C2是等腰直角三角形,A2B2C2的面积是:××=1平方单位故答案为1考点:1、平移变换;2、位似变换;3、勾股定理的逆定理22、(1)75;4;(2)CD=4【解析】(1)根据平行线的性质可得出ADB=OAC=75°,结合BOD=COA可得出BODCOA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出ABD=75°=ADB,由等角对等边可得出AB=AD=4,此题得解;(2)过点B作BEAD交AC于点E,同(1)可得出AE=4,在RtAEB中,利用勾股定理可求出BE的长度,再在RtCAD中,利用勾股定理可求出DC的长,此题得解【详解】解:(1)BDAC,ADB=OAC=75°BOD=COA,BODCOA,又AO=3,OD=AO=,AD=AO+OD=4BAD=30°,ADB=75°,ABD=180°-BAD-ADB=75°=ADB,AB=AD=4(2)过点B作BEAD交AC于点E,如图所示ACAD,BEAD,DAC=BEA=90°AOD=EOB,AODEOB,BO:OD=1:3,AO=3,EO=,AE=4ABC=ACB=75°,BAC=30°,AB=AC,AB=2BE在RtAEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,AB=AC=8,AD=1在RtCAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4【点睛】本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度23、(1)见解析;(2)【解析】(1)根据平行四边形的性质得出AB=CD,BC=AD,B=D,求出BE=DF,根据全等三角形的判定推出即可;(2)求出ABE是等边三角形,求出高AH的长,再求出面积即可【详解】(1)证明:四边形ABCD是平行四边形,点E、F分别是BC、AD的中点,在和中,();(2)作于H,四边形ABCD是平行四边形,点E、F分别是BC、AD的中点,四边形AECF是平行四边形,四边形AECF是菱形,即是等边三角形,由勾股定理得:,四边形AECF的面积是【点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键24、 【解析】根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论【详解】解:+()1+|1|1sin15°=23+11×=23+12=1【点睛】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键

    注意事项

    本文(2023届安徽省合肥45中学中考数学四模试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开