2023届北京市东城区中考数学模拟精编试卷含解析.doc
-
资源ID:87791835
资源大小:794.50KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届北京市东城区中考数学模拟精编试卷含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,按这样的规律进行下去,A11B11C11D11E11F11的边长为()ABCD2如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是( )Aa Bb CD3下列运算正确的是()A(a3)2=a29B()1=2Cx+y=xyDx6÷x2=x34如图,在矩形ABCD中,AD=AB,BAD的平分线交BC于点E,DHAE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:AED=CED;OE=OD;BH=HF;BCCF=2HE;AB=HF,其中正确的有( )A2个B3个C4个D5个5如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A3B4C5D66若是新规定的某种运算符号,设ab=b 2 -a,则-2x=6中x的值()A4B8C2D-27已知常数k0,b0,则函数y=kx+b,的图象大致是下图中的()ABCD8如图,G,E分别是正方形ABCD的边AB,BC上的点,且AGCE,AEEF,AEEF,现有如下结论:BEDH;AGEECF;FCD45°GBEECH其中,正确的结论有( )A4 个B3 个C2 个D1 个9如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B已知小颖的眼睛D离地面的高度CD1.5m,她离镜子的水平距离CE0.5m,镜子E离旗杆的底部A处的距离AE2m,且A、C、E三点在同一水平直线上,则旗杆AB的高度为()A4.5mB4.8mC5.5mD6 m10二次函数yax2+c的图象如图所示,正比例函数yax与反比例函数y在同一坐标系中的图象可能是()ABCD二、填空题(共7小题,每小题3分,满分21分)11已知一元二次方程2x25x+1=0的两根为m,n,则m2+n2=_12计算:=_13|-3|=_;14已知m、n是一元二次方程x2+4x10的两实数根,则_15在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_16在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上(1)已知a=1,点B的纵坐标为1如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为_(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3, =_17因式分解:a2a_三、解答题(共7小题,满分69分)18(10分)如图,在ABC中,B90°,AB4,BC1在BC上求作一点P,使PA+PBBC;(尺规作图,不写作法,保留作图痕迹)求BP的长19(5分)在平面直角坐标系中,抛物线y(xh)2+k的对称轴是直线x1若抛物线与x轴交于原点,求k的值;当1x0时,抛物线与x轴有且只有一个公共点,求k的取值范围20(8分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长(结果保留小数点后一位,参考数据:)21(10分)如图,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作ACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式; (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值; (3)如图,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.22(10分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使他的作法如下:(1)以点O为端点画射线,(2)在上依次截取,(3)在上截取(4)联结,过点B作,交于点D所以:线段_就是所求的线段x试将结论补完整这位同学作图的依据是_如果,试用向量表示向量23(12分)如图,在ABC中,以AB为直径的O交BC于点D,交CA的延长线于点E,过点D作DHAC于点H,且DH是O的切线,连接DE交AB于点F(1)求证:DC=DE;(2)若AE=1,求O的半径24(14分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得E1OD1=60°,则E1OD1为等边三角形,再根据切线的性质得OD2E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可详解:连接OE1,OD1,OD2,如图,六边形A1B1C1D1E1F1为正六边形,E1OD1=60°,E1OD1为等边三角形,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,OD2E1D1,OD2=E1D1=×2,正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A11B11C11D11E11F11的边长=()10×2=故选A点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆记住正六边形的边长等于它的半径2、D【解析】负数小于正数,在(0,1)上的实数的倒数比实数本身大ab ,故选D3、B【解析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.详解:A. (a3)2=a26a+9,故该选项错误;B. ()1=2,故该选项正确;C.x与y不是同类项,不能合并,故该选项错误;D. x6÷x2=x6-2=x4,故该选项错误.故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.4、C【解析】试题分析:在矩形ABCD中,AE平分BAD,BAE=DAE=45°,ABE是等腰直角三角形,AE=AB,AD=AB,AE=AD,又ABE=AHD=90°ABEAHD(AAS),BE=DH,AB=BE=AH=HD,ADE=AED=(180°45°)=67.5°,CED=180°45°67.5°=67.5°,AED=CED,故正确;AHB=(180°45°)=67.5°,OHE=AHB(对顶角相等),OHE=AED,OE=OH,OHD=90°67.5°=22.5°,ODH=67.5°45°=22.5°,OHD=ODH,OH=OD,OE=OD=OH,故正确;EBH=90°67.5°=22.5°,EBH=OHD,又BE=DH,AEB=HDF=45°BEHHDF(ASA),BH=HF,HE=DF,故正确;由上述、可得CD=BE、DF=EH=CE,CF=CD-DF,BC-CF=(CD+HE)-(CD-HE)=2HE,所以正确;AB=AH,BAE=45°,ABH不是等边三角形,ABBH,即ABHF,故错误;综上所述,结论正确的是共4个故选C【点睛】考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角形的判定与性质5、D【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S1【详解】点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S1+S1=4+4-1×1=2故选D6、C【解析】解:由题意得:,x=±1故选C7、D【解析】当k0,b0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项【详解】 解:当k0,b0时,直线与y轴交于正半轴,且y随x的增大而减小,直线经过一、二、四象限,双曲线在二、四象限故选D【点睛】本题考查了一次函数、反比例函数的图象与性质关键是明确系数与图象的位置的联系8、C【解析】由BEG45°知BEA45°,结合AEF90°得HEC45°,据此知 HCEC,即可判断;求出GAE+AEG45°,推出GAEFEC,根据 SAS 推出GAECEF,即可判断;求出AGEECF135°,即可判断;求出FEC45°,根据相似三角形的判定得出GBE和ECH 不相似,即可判断【详解】解:四边形 ABCD 是正方形,ABBCCD,AGGE,BGBE,BEG45°,BEA45°,AEF90°,HEC45°, HCEC,CDCHBCCE,即 DHBE,故错误;BGBE,B90°,BGEBEG45°,AGE135°,GAE+AEG45°,AEEF,AEF90°,BEG45°,AEG+FEC45°,GAEFEC,在GAE 和CEF 中,AG=CE,GAE=CEF,AE=EF,GAECEF(SAS),正确;AGEECF135°,FCD135°90°45°,正确;BGEBEG45°,AEG+FEC45°,FEC45°,GBE 和ECH 不相似,错误; 故选:C【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大9、D【解析】根据题意得出ABECDE,进而利用相似三角形的性质得出答案【详解】解:由题意可得:AE2m,CE0.5m,DC1.5m,ABCEDC,即,解得:AB6,故选:D【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出ABECDE是解答此题的关键10、C【解析】根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a0,c0,正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可【详解】由根与系数的关系得:m+n=,mn=,m2+n2=(m+n)2-2mn=()2-2×=,故答案为:【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化12、-【解析】根据二次根式的运算法则即可求出答案【详解】原式=2.故答案为-.【点睛】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型13、1【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案解答:解:|-1|=1故答案为114、1【解析】先由根与系数的关系求出mn及m+n的值,再把化为 的形式代入进行计算即可【详解】m、n是一元二次方程x2+1x10的两实数根,m+n1,mn1, 1故答案为1【点睛】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法一元二次方程ax2+bx+c0(a0)的根与系数的关系为:x1+x2,x1x2 15、 【解析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是故答案为:【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=16、4 【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,x=±,B在第一象限,A(,1),B(,1),AB=1,向右平移抛物线L使该抛物线过点B,AB=BC=1,AC=4;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BKx轴于K,设OK=t,则AB=BC=1t,B(t,at1),根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,O(0,0),G(4t,0),设抛物线L3的解析式为:y=a3(x0)(x4t),y=a3x(x4t),该抛物线过点B(t,at1),at1=a3t(t4t),t0,a=3a3,=,故答案为(1)4;(1)点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.17、a(a1)【解析】直接提取公因式a,进而分解因式得出答案【详解】a2aa(a1)故答案为a(a1)【点睛】此题考查公因式,难度不大三、解答题(共7小题,满分69分)18、 (1)见解析;(2)2.【解析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.【详解】(1)如图所示,点P即为所求(2)设BPx,则CP1x,由(1)中作图知APCP1x,在RtABP中,由AB2+BP2AP2可得42+x2(1x)2,解得:x2,所以BP2【点睛】考核知识点:勾股定理和线段垂直平分线.19、(1)k1;(2)当4k1时,抛物线与x轴有且只有一个公共点【解析】(1)由抛物线的对称轴直线可得h,然后再由抛物线交于原点代入求出k即可;(2)先根据抛物线与x轴有公共点求出k的取值范围,然后再根据抛物线的对称轴及当1x2时,抛物线与x轴有且只有一个公共点,进一步求出k的取值范围即可.【详解】解:(1)抛物线y(xh)2+k的对称轴是直线x1,h1,把原点坐标代入y(x1)2+k,得,(21)2+k2,解得k1;(2)抛物线y(x1)2+k与x轴有公共点,对于方程(x1)2+k2,判别式b24ac4k2,k2当x1时,y4+k;当x2时,y1+k,抛物线的对称轴为x1,且当1x2时,抛物线与x轴有且只有一个公共点,4+k2且1+k2,解得4k1,综上,当4k1时,抛物线与x轴有且只有一个公共点【点睛】抛物线与一元二次方程的综合是本题的考点,熟练掌握抛物线的性质是解题的关键.20、5.7米【解析】试题分析:由题意,过点A作AHCD于H在RtACH中,可求出CH,进而CD=CH+HD=CH+AB,再在RtCED中,求出CE的长试题解析:解:如答图,过点A作AHCD,垂足为H,由题意可知四边形ABDH为矩形,CAH=30°,AB=DH=1.5,BD=AH=6.在RtACH中,CH=AHtanCAH=6tan30°=6×,DH=1.5,CD=+1.5.在RtCDE中,CED=60°,CE=(米).答:拉线CE的长约为5.7米考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质21、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,). 【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明OMPPNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),OE平分AOB,AOB=90°,AOE=45°,AOE是等腰直角三角形,AE=OA=3,E(3,3),易得OE的解析式为:y=x,过P作PGy轴,交OE于点G,G(m,m),PG=m-(m2-4m+3)=-m2+5m-3,S四边形AOPE=SAOE+SPOE,=×3×3+PGAE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,-0,当m=时,S有最大值是;(3)如图3,过P作MNy轴,交y轴于M,交l于N,OPF是等腰直角三角形,且OP=PF,易得OMPPNF,OM=PN,P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,P的坐标为(,)或(,);如图4,过P作MNx轴于N,过F作FMMN于M,同理得ONPPMF,PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,)点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题22、CD;平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;.【解析】根据作图依据平行线分线段成比例定理求解可得;根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;先证得,即,从而知【详解】,OA:AB=OC:CD,线段就是所求的线段x,故答案为:这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;、,且,即,【点睛】本题主要考查作图复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算23、 (1)见解析;(2).【解析】(1)连接OD,由DHAC,DH是O的切线,然后由平行线的判定与性质可证C=ODB,由圆周角定理可得OBD=DEC,进而C=DEC,可证结论成立;(2)证明OFDAFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接OD,由题意得:DHAC,由且DH是O的切线,ODH=DHA=90°,ODH=DHA=90°,ODCA,C=ODB,OD=OB,OBD=ODB,OBD=C,OBD=DEC,C=DEC,DC=DE;(2)解:由(1)可知:ODAC,ODF=AEF,OFD=AFE,OFDAFE,AE=1,OD=,O的半径为【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.24、,当x1时,原式1【解析】先化简分式,然后将x的值代入计算即可【详解】解:原式 . 且, x的整数有,取,当时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键