2023届上海市西延安中学中考数学押题卷含解析.doc
-
资源ID:87792429
资源大小:841.50KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届上海市西延安中学中考数学押题卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1一元二次方程x2+2x15=0的两个根为()Ax1=3,x2=5 Bx1=3,x2=5Cx1=3,x2=5 Dx1=3,x2=52如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是()ABCD3在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )AB或CD或4估计-1的值在( )A0到1之间B1到2之间C2到3之间D3至4之间5如图,ADBC,AC平分BAD,若B40°,则C的度数是()A40°B65°C70°D80°6估计的值在()A4和5之间B5和6之间C6和7之间D7和8之间7已知二次函数的与的不符对应值如下表:且方程的两根分别为,下面说法错误的是( )A,BC当时,D当时,有最小值8如图,从正方形纸片的顶点沿虚线剪开,则1的度数可能是( )A44B45C46D479如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的周长为18,则四边形EFCD的周长为A14B13C12D1010下列四个实数中是无理数的是( )A2.5 B C D1.41411下列说法正确的是( )A对角线相等且互相垂直的四边形是菱形B对角线互相平分的四边形是正方形C对角线互相垂直的四边形是平行四边形D对角线相等且互相平分的四边形是矩形12已知关于x的一元二次方程有两个相等的实根,则k的值为( )ABC2或3D或二、填空题:(本大题共6个小题,每小题4分,共24分)13已知x+y8,xy2,则x2y+xy2_14一个不透明的口袋中有2个红球,1个黄球,1个白球,每个球除颜色不同外其余均相同小溪同学从口袋中随机取出两个小球,则小溪同学取出的是一个红球、一个白球的概率为_15如图,网格中的四个格点组成菱形ABCD,则tanDBC的值为_ . 16甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为_(填“>”或“<”)17分解因式:4a3bab_18如图,中,则 _三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)解不等式组,请结合题意填空,完成本题的解答(1)解不等式,得_;(2)解不等式,得_;(3)把不等式和的解集在数轴上表示出来;(4)原不等式组的解集为_20(6分)问题提出(1).如图 1,在四边形 ABCD 中,AB=BC,AD=CD=3, BAD=BCD=90°,ADC=60°,则四边形 ABCD 的面积为 ;问题探究(2).如图 2,在四边形 ABCD 中,BAD=BCD=90°,ABC=135°,AB=2 2,BC=3,在 AD、CD 上分别找一点 E、F, 使得BEF 的周长最小,作出图像即可. 21(6分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC求证:1=2;连结BE、DE,判断四边形BCDE的形状,并说明理由.22(8分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;若菜园面积为384m2,求x的值;求菜园的最大面积23(8分)如图,在RtABC中,ABC=90°,AB=CB,以AB为直径的O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交O于点G,DFDG,且交BC于点F(1)求证:AE=BF;(2)连接GB,EF,求证:GBEF;(3)若AE=1,EB=2,求DG的长24(10分)某公司销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.81.4该公司计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润12万元(1)该公司计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍若用于购进这两种教学设备的总资金不超过68万元,问A种设备购进数量至多减少多少套?25(10分)如图,中,于,点分别是的中点.(1)求证:四边形是菱形(2)如果,求四边形的面积26(12分)如图,O的直径DF与弦AB交于点E,C为O外一点,CBAB,G是直线CD上一点,ADGABD求证:ADCEDEDF;说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路过程写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列、中选取一个补充或更换已知条件,完成你的证明CDBCEB;ADEC;DECADF,且CDE90°27(12分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线(1)判断直线l与圆O的关系,并说明理由;(2)若的平分线BF交AD于点F,求证:;(3)在(2)的条件下,若,求AF的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】运用配方法解方程即可.【详解】解:x2+2x15= x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故选择C.【点睛】本题考查了解一元二次方程,选择合适的解方程方法是解题关键.2、B【解析】俯视图是从上面看几何体得到的图形,据此进行判断即可【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形3、B【解析】分析:根据位似变换的性质计算即可详解:点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2),即(2m,2n)或(-2m,-2n),故选B点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k4、B【解析】试题分析:23,1-12,即-1在1到2之间,故选B考点:估算无理数的大小5、C【解析】根据平行线性质得出B+BAD180°,CDAC,求出BAD,求出DAC,即可得出C的度数【详解】解:ADBC,B+BAD180°,B40°,BAD140°,AC平分DAB,DACBAD70°,ABC,CDAC70°,故选C【点睛】本题考查了平行线性质和角平分线定义,关键是求出DAC或BAC的度数6、C【解析】 ,.即的值在6和7之间.故选C.7、C【解析】分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.【详解】A、利用图表中x0,1时对应y的值相等,x1,2时对应y的值相等,x2,5时对应y的值相等,x2,y5,故此选项正确;B、方程ax2bcc0的两根分别是x1、x2(x1x2),且x1时y1;x2时,y1,1x22,故此选项正确;C、由题意可得出二次函数图像向上,当x1xx2时,y0,故此选项错误;D、利用图表中x0,1时对应y的值相等,当x时,y有最小值,故此选项正确,不合题意.所以选C.【点睛】此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.8、A【解析】连接正方形的对角线,然后依据正方形的性质进行判断即可【详解】解:如图所示:四边形为正方形,145°11145°故选:A【点睛】本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键9、C【解析】平行四边形ABCD,ADBC,AD=BC,AO=CO,EAO=FCO,在AEO和CFO中,AEOCFO,AE=CF,EO=FO=1.5,C四边形ABCD=18,CD+AD=9,C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.10、C【解析】本题主要考查了无理数的定义根据无理数的定义:无限不循环小数是无理数即可求解解:A、2.5是有理数,故选项错误;B、是有理数,故选项错误;C、是无理数,故选项正确;D、1.414是有理数,故选项错误故选C11、D【解析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理12、A【解析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论【详解】方程有两个相等的实根,=k2-4×2×3=k2-24=0,解得:k=故选A【点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】将所求式子提取xy分解因式后,把x+y与xy的值代入计算,即可得到所求式子的值【详解】x+y=8,xy=2,x2y+xy2=xy(x+y)=2×8=1故答案为:1【点睛】本题考查的知识点是因式分解的应用,解题关键是将所求式子分解因式14、【解析】先画树状图求出所有等可能的结果数,再找出从口袋中随机摸出2个球,摸到的两个球是一红一白的结果数,然后根据概率公式求解【详解】解:根据题意画树状图如下:共有12种等可能的结果数,其中从口袋中随机摸出2个球,摸到的一个红球、一个白球的结果数为4,所以从口袋中随机摸出2个球,则摸到的两个球是一白一黄的概率为故答案为【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比15、3【解析】试题分析:如图,连接AC与BD相交于点O,四边形ABCD是菱形,ACBD,BO=BD,CO=AC,由勾股定理得,AC=,BD=,所以,BO=,CO=,所以,tanDBC=3故答案为3考点:3菱形的性质;3解直角三角形;3网格型16、>【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;波动越小越稳定.【详解】解:观察平均气温统计图可知:乙地的平均气温比较稳定,波动小;则乙地的日平均气温的方差小,故S2甲S2乙故答案为:【点睛】本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定17、ab(2a+1)(2a-1)【解析】先提取公因式再用公式法进行因式分解即可.【详解】4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.18、17【解析】RtABC中,C=90°,tanA= ,AC8,AB= =17,故答案为17.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)x1;(1)x1;(3)答案见解析;(4)1x1【解析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集【详解】解:(1)解不等式,得x1;(1)解不等式,得 x1;(3)把不等式和的解集在数轴上表示出来:(4)原不等式组的解集为:1x1【点睛】本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键20、(1)3 ,(2)见解析【解析】(1)易证ABDCBD,再利用含30°的直角三角形求出AB、BD的长,即可求出面积.(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,AEF即为所求.【详解】(1)AB=BC,AD=CD=3, BAD=BCD=90°,ABDCBD(HL)ADB=CDB=ADC=30°,AB=SABD=四边形ABCD的面积为2SABD=(2)作点B关于AD的对称点B,点B关于CD的对应点B,连接BB,与AD、CD交于EF,BEF的周长为BE+EF+BF=BE+EF+BF=BB为最短.故此时BEF的周长最小.【点睛】此题主要考查含30°的直角三角形与对称性的应用,解题的关键是根据题意作出相应的图形进行求解.21、(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.【解析】(1)证明ADCABC后利用全等三角形的对应角相等证得结论.(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可【详解】解:(1)证明:在ADC和ABC中,ADCABC(SSS).1=2.(2)四边形BCDE是菱形,理由如下:如答图,1=2,DC=BC,AC垂直平分BD.OE=OC,四边形DEBC是平行四边形.ACBD,四边形DEBC是菱形【点睛】考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定22、(1)见详解;(2)x=18;(3) 416 m2.【解析】(1)根据“垂直于墙的长度=可得函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得【详解】(1)根据题意知,yx;(2)根据题意,得(x)x384,解得x18或x32.墙的长度为24 m,x18.(3)设菜园的面积是S,则S(x)xx2x (x25)2.0,当x25时,S随x的增大而增大.x24,当x24时,S取得最大值,最大值为416.答:菜园的最大面积为416 m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题23、(1)详见解析;(2)详见解析;(3)【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出A与C的度数,根据AB为圆的直径,利用圆周角定理得到ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出A=FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可(1)证明:连接BD,在RtABC中,ABC=90°,AB=BC,A=C=45°,AB为圆O的直径,ADB=90°,即BDAC,AD=DC=BD=AC,CBD=C=45°,A=FBD,DFDG,FDG=90°,FDB+BDG=90°,EDA+BDG=90°,EDA=FDB,在AED和BFD中,A=FBD,AD=BD,EDA=FDB,AEDBFD(ASA),AE=BF;(2)证明:连接EF,BG,AEDBFD,DE=DF,EDF=90°,EDF是等腰直角三角形,DEF=45°,G=A=45°,G=DEF,GBEF;(3)AE=BF,AE=1,BF=1,在RtEBF中,EBF=90°,根据勾股定理得:EF2=EB2+BF2,EB=2,BF=1,EF=,DEF为等腰直角三角形,EDF=90°,cosDEF=,EF=,DE=×,G=A,GEB=AED,GEBAED,即GEED=AEEB,GE=2,即GE=,则GD=GE+ED=24、(1)该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套;(2)A种品牌的教学设备购进数量至多减少1套 【解析】(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据花11万元购进两种设备销售后可获得利润12万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据总价=单价×数量结合用于购进这两种教学设备的总资金不超过18万元,即可得出关于m的一元一次不等式,解之取其中最大的整数即可得出结论【详解】解:(1)设该公司计划购进A种品牌的教学设备x套,购进B种品牌的教学设备y套,根据题意得:解得:答:该公司计划购进A种品牌的教学设备20套,购进B种品牌的教学设备30套(2)设A种品牌的教学设备购进数量减少m套,则B种品牌的教学设备购进数量增加1.5m套,根据题意得:1.5(20m)+1.2(30+1.5m)18,解得:m,m为整数,m1答:A种品牌的教学设备购进数量至多减少1套【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式25、 (1)证明见解析;(2).【解析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)根据等边三角形的性质得出EF=5,AD=5,进而得到菱形AEDF的面积S【详解】解:(1)ADBC,点E、F分别是AB、AC的中点,RtABD中,DE=AB=AE,RtACD中,DF=AC=AF,又AB=AC,点E、F分别是AB、AC的中点,AE=AF,AE=AF=DE=DF,四边形AEDF是菱形;(2)如图,AB=AC=BC=10,EF=5,AD=5,菱形AEDF的面积S=EFAD×5×5【点睛】本题考查菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半26、 (1)见解析;(2)见解析.【解析】连接AF,由直径所对的圆周角是直角、同弧所对的圆周角相等的性质,证得直线CD是O的切线,若证ADCEDEDF,只要征得ADFDEC即可在第一问中只能证得EDCDAF90°,所以在第二问中只要证得DECADF即可解答此题【详解】(1)连接AF,DF是O的直径,DAF90°,F+ADF90°,FABD,ADGABD,FADG,ADF+ADG90°直线CD是O的切线EDC90°,EDCDAF90°;(2)选取完成证明直线CD是O的切线,CDBACDBCEB,ACEBADECDECADFEDCDAF90°,ADFDECAD:DEDF:ECADCEDEDF【点睛】此题考查了切线的性质与判定、弦切角定理、相似三角形的判定与性质等知识注意乘积的形式可以转化为比例的形式,通过证明三角形相似得出还要注意构造直径所对的圆周角是圆中的常见辅助线27、(1)直线l与相切,见解析;(2)见解析;(3)AF=.【解析】连接由题意可证明,于是得到,由等腰三角形三线合一的性质可证明,于是可证明,故此可证明直线l与相切;先由角平分线的定义可知,然后再证明,于是可得到,最后依据等角对等边证明即可;先求得BE的长,然后证明,由相似三角形的性质可求得AE的长,于是可得到AF的长【详解】直线l与相切理由:如图1所示:连接OE平分,直线l与相切平分,又,又,由得,即,解得;故答案为:(1)直线l与相切,见解析;(2)见解析;(3)AF=.【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得是解题的关键