2023届四川广安友谊中学毕业升学考试模拟卷数学卷含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1已知下列命题:对顶角相等;若ab0,则;对角线相等且互相垂直的四边形是正方形;抛物线y=x22x与坐标轴有3个不同交点;边长相等的多边形内角都相等从中任选一个命题是真命题的概率为()ABCD2如图,若ABCD,则、之间的关系为()A+=360°B+=180°C+=180°D+=180°3为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m1),绘制了统计图,如图所示下面有四个推断:年用水量不超过180m1的该市居民家庭按第一档水价交费;年用水量不超过240m1的该市居民家庭按第三档水价交费;该市居民家庭年用水量的中位数在150180m1之间;该市居民家庭年用水量的众数约为110m1 其中合理的是( )ABCD4下面几何的主视图是( )ABCD5如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()AmBmCm=Dm=6已知O及O外一点P,过点P作出O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:连接OP,作OP的垂直平分线l,交OP于点A;以点A为圆心、OA为半径画弧、交O于点M;作直线PM,则直线PM即为所求(如图1)乙:让直角三角板的一条直角边始终经过点P;调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在O上,记这时直角顶点的位置为点M;作直线PM,则直线PM即为所求(如图2)对于两人的作业,下列说法正确的是( )A甲乙都对B甲乙都不对C甲对,乙不对D甲不对,已对7PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )A0.25×105B0.25×106C2.5×105D2.5×1068(2011雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )A(3,4) B(3,4)C(4,3) D(3,4)9过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()ABCD10估计的值在 ( )A4和5之间B5和6之间C6和7之间D7和8之间二、填空题(本大题共6个小题,每小题3分,共18分)11如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”则半径为2的“等边扇形”的面积为 12若有意义,则x 的取值范围是 13如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为_米(结果保留两个有效数字)(参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601)14某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_15已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_厘米16如图,P是O的直径AB延长线上一点,PC切O于点C,PC=6,BC:AC=1:2,则AB的长为_三、解答题(共8题,共72分)17(8分)如图,已知平行四边形ABCD,将这个四边形折叠,使得点A和点C重合,请你用尺规做出折痕所在的直线。(保留作图痕迹,不写做法)18(8分)如图,D为O上一点,点C在直径BA的延长线上,且CDACBD (1)求证:CD是O的切线; (2)过点B作O的切线交CD的延长线于点E,BC6,求BE的长19(8分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且ACx轴.(1)已知A(3,0),B(1,0),AC=OA求抛物线解析式和直线OC的解析式;点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EGx轴于G,连CG,BF,求证:CGBF20(8分)已知:如图,AB为O的直径,C,D是O直径AB异侧的两点,AC=DC,过点C与O相切的直线CF交弦DB的延长线于点E(1)试判断直线DE与CF的位置关系,并说明理由;(2)若A=30°,AB=4,求的长21(8分)如图,点A,B,C都在抛物线y=ax22amx+am2+2m5(其中a0)上,ABx轴,ABC=135°,且AB=1(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);(2)求ABC的面积(用含a的代数式表示);(3)若ABC的面积为2,当2m5x2m2时,y的最大值为2,求m的值22(10分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E(1)求证:DCEBFE;(2)若AB=4,tanADB=,求折叠后重叠部分的面积23(12分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.24如图是一副扑克牌中的三张牌,将它们正面向下洗均匀,甲同学从中随机抽取一张牌后放回,乙同学再从中随机抽取一张牌,用树状图(或列表)的方法,求抽出的两张牌中,牌面上的数字都是偶数的概率参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】对顶角相等,故此选项正确;若ab0,则,故此选项正确;对角线相等且互相垂直平分的四边形是正方形,故此选项错误;抛物线y=x22x与坐标轴有2个不同交点,故此选项错误;边长相等的多边形内角不一定都相等,故此选项错误;从中任选一个命题是真命题的概率为:故选:B2、C【解析】过点E作EFAB,如图,易得CDEF,然后根据平行线的性质可得BAE+FEA=180°,C=FEC=,进一步即得结论【详解】解:过点E作EFAB,如图,ABCD,ABEF,CDEF,BAE+FEA=180°,C=FEC=,FEA=,+()=180°,即+=180°故选:C【点睛】本题考查了平行公理的推论和平行线的性质,属于常考题型,作EFAB、熟练掌握平行线的性质是解题的关键3、B【解析】利用条形统计图结合中位数和中位数的定义分别分析得出答案【详解】由条形统计图可得:年用水量不超过180m1的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),×100%=80%,故年用水量不超过180m1的该市居民家庭按第一档水价交费,正确;年用水量超过240m1的该市居民家庭有(0.15+0.15+0.05)=0.15(万),×100%=7%5%,故年用水量超过240m1的该市居民家庭按第三档水价交费,故此选项错误;5万个数据的中间是第25000和25001的平均数,该市居民家庭年用水量的中位数在120-150之间,故此选项错误;该市居民家庭年用水量为110m1有1.5万户,户数最多,该市居民家庭年用水量的众数约为110m1,因此正确,故选B【点睛】此题主要考查了频数分布直方图以及中位数和众数的定义,正确利用条形统计图获取正确信息是解题关键4、B【解析】主视图是从物体正面看所得到的图形【详解】解:从几何体正面看故选B【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图5、C【解析】试题解析:一元二次方程2x2+3x+m=0有两个相等的实数根,=32-4×2m=9-8m=0,解得:m=故选C6、A【解析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到O=AMO,AMP=MPA,所以OMA+AMP=O+MPA=90°,得出MP是O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,所以OMP=90°,得到MP是O的切线【详解】证明:(1)如图1,连接OM,OA连接OP,作OP的垂直平分线l,交OP于点A,OA=AP以点A为圆心、OA为半径画弧、交O于点M;OA=MA=AP,O=AMO,AMP=MPA,OMA+AMP=O+MPA=90°,OMMP,MP是O的切线;(1)如图1直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,OMP=90°,MP是O的切线故两位同学的作法都正确故选A【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性7、D【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)【详解】解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而故选D8、A【解析】关于x轴对称的点,横坐标相同,纵坐标互为相反数,点P的坐标为(3,4)故选A9、B【解析】试题解析:选项折叠后都不符合题意,只有选项折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去三角形交于一个顶点符合.故选B.10、C【解析】根据 ,可以估算出位于哪两个整数之间,从而可以解答本题【详解】解: 即故选:C【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】试题分析:根据题意可得圆心角的度数为:,则S=1考点:扇形的面积计算12、x【解析】略13、6.2【解析】根据题意和锐角三角函数可以求得BC的长,从而可以解答本题.【详解】解:在RtABC中,ACB=90°,BC=ABsinBAC=12×0.5156.2(米),答:大厅两层之间的距离BC的长约为6.2米故答案为:6.2.【点睛】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数和数形结合的思想解答.14、100(1+x)2=121【解析】根据题意给出的等量关系即可求出答案【详解】由题意可知:100(1+x)2=121故答案为:100(1+x)2=121【点睛】本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型15、1或5.【解析】小正方形的高不变,根据面积即可求出小正方形平移的距离【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷21,如图,小正方形平移距离为1厘米;如图,小正方形平移距离为4+15厘米故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变画出图形即可直观解答16、1【解析】PC切O于点C,则PCB=A,P=P,PCBPAC,,BP=PC=3,PC2=PBPA,即36=3PA,PA=12AB=12-3=1故答案是:1.三、解答题(共8题,共72分)17、答案见解析【解析】根据轴对称的性质作出线段AC的垂直平分线即可得【详解】如图所示,直线EF即为所求【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的性质和线段中垂线的尺规作图18、(1)证明见解析;(2).【解析】试题分析:连接OD.根据圆周角定理得到ADOODB90°,而CDACBD,CBDBDO.于是ADOCDA90°,可以证明是切线. 根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论试题解析:(1)连接OD.OBOD,OBDBDO.CDACBD,CDAODB.又AB是O的直径,ADB90°,ADOODB90°,ADOCDA90°,即CDO90°,ODCD.OD是O的半径,CD是O的切线;(2)CC,CDACBD,CDACBD,BC6,CD4.CE,BE是O的切线,BEDE,BEBC,BE2BC2EC2,即BE262(4BE)2,解得BE.19、 (1)y=x24x3;y=x;t= 或;(2)证明见解析.【解析】(1)把A(3,0),B(1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;由题意得OP=2t,P(2t,0),过Q作QHx轴于H,得OH=HQ=t,可得Q(t,t),直线 PQ为yx2t,过M作MGx轴于G,由,则2PGGH,由,得, 于是,解得,从而求出M(3t,t)或M(),再分情况计算即可; (2) 过F作FHx轴于H,想办法证得tanCAG=tanFBH,即CAG=FBH,即得证.【详解】解:(1)把A(3,0),B(1,0)代入二次函数解析式得解得y=x24x3;由AC=OA知C点坐标为(-3,-3),直线OC的解析式y=x;OP=2t,P(2t,0),过Q作QHx轴于H,QO=,OH=HQ=t, Q(t,t),PQ:yx2t,过M作MGx轴于G,,2PGGH,即, , M(3t,t)或M()当M(3t,t)时:,当M()时:,综上:或(2)设A(m,0)、B(n,0),m、n为方程x2bxc=0的两根,m+n=b,mnc,yx2+(m+n)xmn(xm)(xn),E、F在抛物线上,设、,设EF:ykx+b, , ,令xmAC=,又,tanCAG=,另一方面:过F作FHx轴于H, tanFBH=tanCAG=tanFBH CAG=FBH CGBF【点睛】此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.20、 (1)见解析;(2).【解析】(1)先证明OACODC,得出1=2,则2=4,故OCDE,即可证得DECF;(2)根据OA=OC得到2=3=30°,故COD=120°,再根据弧长公式计算即可.【详解】解:(1)DECF理由如下:CF为切线,OCCF,CA=CD,OA=OD,OC=OC,OACODC,1=2,而A=4,2=4,OCDE,DECF;(2)OA=OC,1=A=30°,2=3=30°,COD=120°,【点睛】本题考查了全等三角形的判定与性质与弧长的计算,解题的关键是熟练的掌握全等三角形的判定与性质与弧长的公式.21、(1)(m,2m2);(2)SABC =;(3)m的值为或10+2【解析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由ABx轴且AB1,可得出点B的坐标为(m2,1a2m2),设BDt,则点C的坐标为(m2t,1a2m2t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出SABC的值;(3)由(2)的结论结合SABC2可求出a值,分三种情况考虑:当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;当2m2m2m2,即2m2时,xm时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;当m2m2,即m2时,x2m2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值综上即可得出结论详解:(1)y=ax22amx+am2+2m2=a(xm)2+2m2,抛物线的顶点坐标为(m,2m2),故答案为(m,2m2);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,ABx轴,且AB=1,点B的坐标为(m+2,1a+2m2),ABC=132°,设BD=t,则CD=t,点C的坐标为(m+2+t,1a+2m2t),点C在抛物线y=a(xm)2+2m2上,1a+2m2t=a(2+t)2+2m2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=,SABC=ABCD=;(3)ABC的面积为2,=2,解得:a=,抛物线的解析式为y=(xm)2+2m2分三种情况考虑:当m2m2,即m2时,有(2m2m)2+2m2=2,整理,得:m211m+39=0,解得:m1=7(舍去),m2=7+(舍去);当2m2m2m2,即2m2时,有2m2=2,解得:m=;当m2m2,即m2时,有(2m2m)2+2m2=2,整理,得:m220m+60=0,解得:m3=102(舍去),m1=10+2综上所述:m的值为或10+2点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m2、2m2及m2三种情况考虑22、(1)见解析;(2)1【解析】(1)由矩形的性质可知A=C=90°,由翻折的性质可知A=F=90°,从而得到F=C,依据AAS证明DCEBFE即可;(2)由DCEBFE可知:EB=DE,依据AB=4,tanADB=,即可得到DC,BC的长,然后再RtEDC中利用勾股定理列方程,可求得BE的长,从而可求得重叠部分的面积【详解】解:(1)四边形ABCD是矩形,A=C=90°,AB=CD,由折叠可得,F=A,BF=AB,BF=DC,F=C=90°,又BEF=DEC,DCEBFE;(2)AB=4,tanADB=,AD=8=BC,CD=4,DCEBFE,BE=DE,设BE=DE=x,则CE=8x,在RtCDE中,CE2+CD2=DE2,(8x)2+42=x2,解得x=5,BE=5,SBDE=BE×CD=×5×4=1【点睛】本题考查了折叠的性质、全等三角形的判定和性质以及勾股定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等23、(2)见解析;(2)k<2【解析】(2)根据方程的系数结合根的判别式,可得=(k-2)22,由此可证出方程总有两个实数根;(2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根据方程有一根小于2,即可得出关于k的一元一次不等式,解之即可得出k的取值范围【详解】(2)证明:在方程中,=-(k+3)-4×2×(2k+2)=k-2k+2=(k-2)2,方程总有两个实数根(2) x-(k+3)x+2k+2=(x-2)(x-k-2)=2,x=2,x=k+2方程有一根小于2,k+2<2,解得:k<2,k的取值范围为k<2【点睛】此题考查根的判别式,解题关键在于掌握运算公式.24、 【解析】画树状图展示所有9种等可能的结果数,再找出两次抽取的牌上的数字都是偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有9种等可能的结果数,其中两次抽取的牌上的数字都是偶数的结果数为2,所以两次抽取的牌上的数字都是偶数的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率