2023届上海市浦东新区第四署达标名校中考适应性考试数学试题含解析.doc
-
资源ID:87792439
资源大小:1.10MB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届上海市浦东新区第四署达标名校中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1在下列条件中,能够判定一个四边形是平行四边形的是( )A一组对边平行,另一组对边相等B一组对边相等,一组对角相等C一组对边平行,一条对角线平分另一条对角线D一组对边相等,一条对角线平分另一条对角线2根据九章算术的记载中国人最早使用负数,下列负数中最大的是( )A-1B-CD3已知直线mn,将一块含30°角的直角三角板ABC按如图方式放置(ABC=30°),其中A,B两点分别落在直线m,n上,若1=20°,则2的度数为()A20°B30°C45°D50°4如图,已知反比函数的图象过RtABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若ABO的周长为,AD=2,则ACO的面积为( )AB1C2D45如图,ABC中,B=55°,C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则BAD的度数为( )A65°B60°C55°D45°6如图,若锐角ABC内接于O,点D在O外(与点C在AB同侧),则C与D的大小关系为()ACDBCDCC=DD无法确定7如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是()ABCD8如图所示,如果将一副三角板按如图方式叠放,那么 1 等于( )ABCD9如图,在正方形ABCD中,AB,P为对角线AC上的动点,PQAC交折线ADC于点Q,设APx,APQ的面积为y,则y与x的函数图象正确的是()ABCD10北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为()A0.72×106平方米B7.2×106平方米C72×104平方米D7.2×105平方米二、填空题(本大题共6个小题,每小题3分,共18分)11小青在八年级上学期的数学成绩如下表所示平时测验期中考试期末考试成绩869081如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_分12把多项式a32a2+a分解因式的结果是 13如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为_个.14如图,ABC中,AB=AC,D是AB上的一点,且AD=AB,DFBC,E为BD的中点若EFAC,BC=6,则四边形DBCF的面积为_15已知正方形ABCD,AB1,分别以点A、C为圆心画圆,如果点B在圆A外,且圆A与圆C外切,那么圆C的半径长r的取值范围是_16如图,四边形ABCD中,ABCD,ADC=90°,P从A点出发,以每秒1个单位长度的速度,按ABCD的顺序在边上匀速运动,设P点的运动时间为t秒,PAD的面积为S,S关于t的函数图象如图所示,当P运动到BC中点时,PAD的面积为_三、解答题(共8题,共72分)17(8分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.18(8分)如图,已知一次函数y1=kx+b(k0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点且点A的横坐标和点B的纵坐标都是1求一次函数的解析式;求AOB的面积;观察图象,直接写出y1y1时x的取值范围19(8分)阅读 (1)阅读理解:如图,在ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180°得到EBD),把AB,AC,2AD集中在ABE中,利用三角形三边的关系即可判断中线AD的取值范围是_; (2)问题解决:如图,在ABC中,D是BC边上的中点,DEDF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CFEF; (3)问题拓展:如图,在四边形ABCD中,B+D=180°,CB=CD,BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明20(8分) “机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A非常了解,B比较了解,C基本了解,D不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率21(8分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设OAC=,请用表示AOD;(2)如图,当点B为的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE的长22(10分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价)小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8812小刚121016(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?23(12分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组求解一元二次方程,把它转化为两个一元一次方程来解求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知用“转化”的数学思想,我们还可以解一些新的方程例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解问题:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;拓展:用“转化”思想求方程的解;应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C求AP的长24商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施经调査发现,每件商品每降价1元,商场平均每天可多售出2件若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加_件,每件商品,盈利_元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】A、错误这个四边形有可能是等腰梯形B、错误不满足三角形全等的条件,无法证明相等的一组对边平行C、正确可以利用三角形全等证明平行的一组对边相等故是平行四边形D、错误不满足三角形全等的条件,无法证明相等的一组对边平行故选C2、B【解析】根据两个负数,绝对值大的反而小比较【详解】解: 1 ,负数中最大的是故选:B【点睛】本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小3、D【解析】根据两直线平行,内错角相等计算即可.【详解】因为mn,所以2=1+30°,所以2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.4、A【解析】在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可【详解】在RtAOB中,AD=2,AD为斜边OB的中线,OB=2AD=4,由周长为4+2,得到AB+AO=2,设AB=x,则AO=2-x,根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,AB=+,OA=-,过D作DEx轴,交x轴于点E,可得E为AO中点,OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),在RtDEO中,利用勾股定理得:DE=(+)),k=-DEOE=-(+))×(-))=1.SAOC=DEOE=,故选A【点睛】本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键5、A【解析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到C=DAC,求得DAC=30°,根据三角形的内角和得到BAC=95°,即可得到结论【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故C=DAC,C=30°,DAC=30°,B=55°,BAC=95°,BAD=BAC-CAD=65°,故选A【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键6、A【解析】直接利用圆周角定理结合三角形的外角的性质即可得.【详解】连接BE,如图所示:ACB=AEB,AEBD,CD故选:A【点睛】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键7、D【解析】由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可【详解】因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是故选D【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键8、B【解析】解:如图,2=90°45°=45°,由三角形的外角性质得,1=2+60°=45°+60°=105°故选B 点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键9、B【解析】在正方形ABCD中, AB=,AC4,ADDC,DAPDCA45o,当点Q在AD上时,PAPQ,DP=AP=x,S ;当点Q在DC上时,PCPQCP4x,S;所以该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下,故选B.【点睛】本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在AP、DC上这两种情况10、D【解析】试题分析:把一个数记成a×10n(1a<10,n整数位数少1)的形式,叫做科学记数法此题可记为12×105平方米考点:科学记数法二、填空题(本大题共6个小题,每小题3分,共18分)11、84.2【解析】小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2.12、【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式因此,13、8【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,搭成这个几何体的小正方体的个数最少是5+2+1=8(个)故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数14、2【解析】解:如图,过D点作DGAC,垂足为G,过A点作AHBC,垂足为H,AB=AC,点E为BD的中点,且AD=AB,设BE=DE=x,则AD=AF=1xDGAC,EFAC,DGEF,即,解得DFBC,ADFABC,即,解得DF=1又DFBC,DFG=C,RtDFGRtACH,即,解得在RtABH中,由勾股定理,得又ADFABC,故答案为:215、1r【解析】首先根据题意求得对角线AC的长,设圆A的半径为R,根据点B在圆A外,得出0R1,则-1-R0,再根据圆A与圆C外切可得R+r=,利用不等式的性质即可求出r的取值范围【详解】正方形ABCD中,AB=1,AC=,设圆A的半径为R,点B在圆A外,0R1,-1-R0,-1-R以A、C为圆心的两圆外切,两圆的半径的和为,R+r=,r=-R,-1r故答案为:-1r【点睛】本题考查了圆与圆的位置关系,点与圆的位置关系,正方形的性质,勾股定理,不等式的性质掌握位置关系与数量之间的关系是解题的关键16、1【解析】解:由图象可知,AB+BC=6,AB+BC+CD=10,CD=4,根据题意可知,当P点运动到C点时,PAD的面积最大,SPAD=×AD×DC=8,AD=4,又SABD=×AB×AD=2,AB=1,当P点运动到BC中点时,PAD的面积=×(AB+CD)×AD=1,故答案为1三、解答题(共8题,共72分)17、(1)这两年该市推行绿色建筑面积的年平均增长率为40%;(2)如果2017年仍保持相同的年平均增长率,2017年该市能完成计划目标【解析】试题分析:(1)设这两年该市推行绿色建筑面积的年平均增长率x,根据2014年的绿色建筑面积约为700万平方米和2016年达到了1183万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2017年绿色建筑面积,再与计划推行绿色建筑面积达到1500万平方米进行比较,即可得出答案试题解析:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,根据题意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=2.3(舍去),答:这两年该市推行绿色建筑面积的年平均增长率为30%;(2)根据题意得:1183×(1+30%)=1537.9(万平方米),1537.91500,2017年该市能完成计划目标【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解18、(1)y1=x+1,(1)6;(3)x1或0x4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为AOB的分割线,求得AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可试题解析:(1)设点A坐标为(1,m),点B坐标为(n,1)一次函数y1=kx+b(k0)的图象与反比例函数y1=的图象交于A、B两点将A(1,m)B(n,1)代入反比例函数y1=可得,m=4,n=4将A(1,4)、B(4,1)代入一次函数y1=kx+b,可得,解得一次函数的解析式为y1=x+1;,(1)在一次函数y1=x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1y1时,x的取值范围为:x1或0x4考点:1、一次函数,1、反比例函数,3、三角形的面积19、(1)2AD8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【解析】试题分析:(1)延长AD至E,使DE=AD,由SAS证明ACDEBD,得出BE=AC=6,在ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得BMDCFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在BME中,由三角形的三边关系得出BE+BMEM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出NBC=D,由SAS证明NBCFDC,得出CN=CF,NCB=FCD,证出ECN=70°=ECF,再由SAS证明NCEFCE,得出EN=EF,即可得出结论试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图所示:AD是BC边上的中线,BD=CD,在BDE和CDA中,BD=CD,BDE=CDA,DE=AD,BDECDA(SAS),BE=AC=6,在ABE中,由三角形的三边关系得:ABBEAEAB+BE,106AE10+6,即4AE16,2AD8;故答案为2AD8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图所示:同(1)得:BMDCFD(SAS),BM=CF,DEDF,DM=DF,EM=EF,在BME中,由三角形的三边关系得:BE+BMEM,BE+CFEF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:ABC+D=180°,NBC+ABC=180°,NBC=D,在NBC和FDC中,BN=DF,NBC =D,BC=DC,NBCFDC(SAS),CN=CF,NCB=FCD,BCD=140°,ECF=70°,BCE+FCD=70°,ECN=70°=ECF,在NCE和FCE中,CN=CF,ECN=ECF,CE=CE,NCEFCE(SAS),EN=EF,BE+BN=EN,BE+DF=EF考点:全等三角形的判定和性质;三角形的三边关系定理.20、(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为【解析】【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;(3)用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【详解】(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C所对应扇形的圆心角度数是360°×=90°, 故答案为60、90°;(2)D类型人数为60×5%=3,则B类型人数为60(24+15+3)=18,补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名;(4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.21、(1);(2);(3)【解析】(1)连接OB、OC,可证OBC是等边三角形,根据垂径定理可得DOC等于30°,OA=OC可得ACO=CAO=,利用三角形的内角和定理即可表示出AOD的值.(2)连接OB、OC,可证OBC是等边三角形,根据垂径定理可得DOB等于30°,因为点D为BC的中点,则AOB=BOC=60°,所以AOD等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD、AD的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD的长,再过O点作AE的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB、OC.BC=AOOB=OC=BCOBC是等边三角形BOC=60°点D是BC的中点BOD=OA=OC=AOD=180°-=150°-2(2)如图2:连接OB、OC、OD.由(1)可得:OBC是等边三角形,BOD=OB=2,OD=OBcos=B为的中点,AOB=BOC=60°AOD=90°根据勾股定理得:AD= (3)如图3.圆O与圆D相内切时:连接OB、OC,过O点作OFAEBC是直径,D是BC的中点以BC为直径的圆的圆心为D点由(2)可得:OD=,圆D的半径为1AD=设AF=x在RtAFO和RtDOF中, 即解得:AE=如图4.圆O与圆D相外切时:连接OB、OC,过O点作OFAEBC是直径,D是BC的中点以BC为直径的圆的圆心为D点由(2)可得:OD=,圆D的半径为1AD=在RtAFO和RtDOF中, 即解得:AE=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.22、(1)x=1,y=;(2)小华的打车总费用为18元.【解析】试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组(2)根据里程数和时间来计算总费用试题解析:(1)由题意得,解得;(2)小华的里程数是11km,时间为14min则总费用是:11x+14y=11+7=18(元)答:总费用是18元23、 (1)-2,1;(2)x=3;(3)4m.【解析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP的长为xm,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1),所以或或,;故答案为,1;(2),方程的两边平方,得即或,当时,所以不是原方程的解所以方程的解是;(3)因为四边形是矩形,所以,设,则因为, 两边平方,得整理,得两边平方并整理,得即所以经检验,是方程的解答:的长为【点睛】考查了转化的思想方法,一元二次方程的解法解无理方程是注意到验根解决(3)时,根据勾股定理和绳长,列出方程是关键24、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50x(3)每件商品降价1元时,商场日盈利可达到2000元【解析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元)答:若某天该商品每件降价3元,当天可获利1692元(2)每件商品每降价1元,商场平均每天可多售出2件,设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元故答案为2x;50-x(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,商城要尽快减少库存,x=1答:每件商品降价1元时,商场日盈利可达到2000元【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式)