2023届山东省临沂市经济技术开发区市级名校中考三模数学试题含解析.doc
-
资源ID:87792514
资源大小:633.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届山东省临沂市经济技术开发区市级名校中考三模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,AB为O的直径,C,D为O上的两点,若AB14,BC1则BDC的度数是()A15°B30°C45°D60°2如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,剪掉的这个小正方形是A甲B乙C丙D丁3我国作家莫言获得诺贝尔文学奖之后,他的代表作品蛙的销售量就比获奖之前增长了180倍,达到2100000册把2100000用科学记数法表示为()A0.21×108B21×106C2.1×107D2.1×1064下列判断正确的是()A任意掷一枚质地均匀的硬币10次,一定有5次正面向上B天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C“篮球队员在罚球线上投篮一次,投中”为随机事件D“a是实数,|a|0”是不可能事件5如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形ABC,CDE,EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则DIJ的面积是()ABCD6在3,0,2, 四个数中,最小的数是( )A3B0C2D7如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:3a+b<0;-1a-;对于任意实数m,a+bam2+bm总成立;关于x的方程ax2+bx+c=n-1有两个不相等的实数根其中结论正确的个数为( )A1个 B2个 C3个 D4个8如图,将函数y(x2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()Ay(x2)2-2By(x2)2+7Cy(x2)2-5Dy(x2)2+49若是关于x的方程的一个根,则方程的另一个根是( )A9B4C4D310方程x23x0的根是( )Ax0Bx3C,D,二、填空题(共7小题,每小题3分,满分21分)11请写出一个 开口向下,并且与y轴交于点(0,1)的抛物线的表达式_12如图,在平面直角坐标系中,函数y=(x0)的图象经过矩形OABC的边AB、BC的中点E、F,则四边形OEBF的面积为_13如图,在每个小正方形的边长为1的网格中,A,B为格点()AB的长等于_()请用无刻度的直尺,在如图所示的网格中求作一点C,使得CA=CB且ABC的面积等于,并简要说明点C的位置是如何找到的_14废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当于一个人一生的饮水量)某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学记数法表示为_立方米15计算_16如图,平行于x轴的直线AC分别交抛物线y1=x2(x0)与y2=(x0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DEAC,交y2于点E,则 =_17已知x=2是关于x的一元二次方程kx2+(k22)x+2k+4=0的一个根,则k的值为_三、解答题(共7小题,满分69分)18(10分) “校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有 人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数19(5分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)20(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间21(10分)(感知)如图,四边形ABCD、CEFG均为正方形可知BE=DG(拓展)如图,四边形ABCD、CEFG均为菱形,且A=F求证:BE=DG(应用)如图,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上若AE=2ED,A=F,EBC的面积为8,菱形CEFG的面积是_(只填结果)22(10分)在RtABC中,ACB90°,BE平分ABC,D是边AB上一点,以BD为直径的O经过点E,且交BC于点F(1)求证:AC是O的切线;(2)若BF6,O的半径为5,求CE的长23(12分)如图,矩形ABCD中,点E为BC上一点,DFAE于点F,求证:AEBCDF.24(14分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)ABFDCE;四边形ABCD是矩形参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】只要证明OCB是等边三角形,可得CDB=COB即可解决问题.【详解】如图,连接OC,AB=14,BC=1,OB=OC=BC=1,OCB是等边三角形,COB=60°,CDB=COB=30°,故选B【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型2、D【解析】解:将如图所示的图形剪去一个小正方形,使余下的部分不能围成一个正方体,编号为甲乙丙丁的小正方形中剪去的是丁故选D3、D【解析】2100000=2.1×106.点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.4、C【解析】直接利用概率的意义以及随机事件的定义分别分析得出答案【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|0”是必然事件,故此选项错误故选C【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键5、A【解析】根据等边三角形的性质得到FGEG3,AGFFEG60°,根据三角形的内角和得到AFG90°,根据相似三角形的性质得到=,=,根据三角形的面积公式即可得到结论【详解】AC1,CE2,EG3,AG6,EFG是等边三角形,FGEG3,AGFFEG60°,AEEF3,FAGAFE30°,AFG90°,CDE是等边三角形,DEC60°,AJE90°,JEFG,AJEAFG,=,EJ,BCADCEFEG60°,BCDDEF60°,ACIAEF120°,IACFAE,ACIAEF,=,CI1,DI1,DJ,IJ,=DIIJ××故选:A【点睛】本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键6、C【解析】根据比较实数大小的方法进行比较即可根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解【详解】因为正数大于负数,两个负数比较大小,绝对值较大的数反而较小,所以,所以最小的数是,故选C.【点睛】此题主要考查了实数的大小的比较,正数都大于0,负数都小于0,两个负数绝对值大的反而小7、D【解析】利用抛物线开口方向得到a0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对进行判断;利用2c3和c=-3a可对进行判断;利用二次函数的性质可对进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对进行判断【详解】抛物线开口向下,a0,而抛物线的对称轴为直线x=-=1,即b=-2a,3a+b=3a-2a=a0,所以正确;2c3,而c=-3a,2-3a3,-1a-,所以正确;抛物线的顶点坐标(1,n),x=1时,二次函数值有最大值n,a+b+cam2+bm+c,即a+bam2+bm,所以正确;抛物线的顶点坐标(1,n),抛物线y=ax2+bx+c与直线y=n-1有两个交点,关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以正确故选D【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c)抛物线与x轴交点个数由判别式确定:=b2-4ac0时,抛物线与x轴有2个交点;=b2-4ac=0时,抛物线与x轴有1个交点;=b2-4ac0时,抛物线与x轴没有交点8、D【解析】函数的图象过点A(1,m),B(4,n),m=,n=3,A(1,),B(4,3),过A作ACx轴,交BB的延长线于点C,则C(4,),AC=41=3,曲线段AB扫过的面积为9(图中的阴影部分),ACAA=3AA=9,AA=3,即将函数的图象沿y轴向上平移3个单位长度得到一条新函数的图象,新图象的函数表达式是故选D9、D【解析】解:设方程的另一个根为a,由一元二次方程根与系数的故选可得,解得a=,故选D.10、D【解析】先将方程左边提公因式x,解方程即可得答案【详解】x23x0,x(x3)0,x10,x23,故选:D【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键二、填空题(共7小题,每小题3分,满分21分)11、(答案不唯一)【解析】根据二次函数的性质,抛物线开口向下a<0,与y轴交点的纵坐标即为常数项,然后写出即可【详解】抛物线开口向下,并且与y轴交于点(0,1)二次函数的一般表达式中,a<0,c=1,二次函数表达式可以为:(答案不唯一).【点睛】本题考查二次函数的性质,掌握开口方向、与y轴的交点与二次函数二次项系数、常数项的关系是解题的关键.12、2【解析】设矩形OABC中点B的坐标为,点E、F是AB、BC的中点,点E、F的坐标分别为:、,点E、F都在反比例函数的图象上,SOCF=,SOAE=,S矩形OABC=,S四边形OEBF= S矩形OABC- SOAE-SOCF=.即四边形OEBF的面积为2.点睛:反比例函数中“”的几何意义为:若点P是反比例函数图象上的一点,连接坐标原点O和点P,过点P向坐标轴作垂线段,垂足为点D,则SOPD=.13、 取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求 【解析】()利用勾股定理计算即可;()取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求【详解】解:()AB= =,故答案为()如图取格点P、N(使得SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求故答案为:取格点P、N(SPAB=),作直线PN,再证=作线段AB的垂直平分线EF交PN于点C,点C即为所求【点睛】本题考查作图应用与设计,线段的垂直平分线的性质、等高模型等知识,解题的关键是学会利用数形结合的思想思考问题,属于中考常考题型14、3×1【解析】因为一粒纽扣电池能污染600立方米的水,如果每名学生一年丢弃一粒纽扣电池,那么被该班学生一年丢弃的纽扣电池能污染的水就是:600×50=30 000,用科学记数法表示为3×1立方米故答案为3×115、【解析】根据同底数幂的乘法法则计算即可.【详解】故答案是:【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键.16、3【解析】首先设点B的横坐标,由点B在抛物线y1=x2(x0)上,得出点B的坐标,再由平行,得出A和C的坐标,然后由CD平行于y轴,得出D的坐标,再由DEAC,得出E的坐标,即可得出DE和AB,进而得解.【详解】设点B的横坐标为,则平行于x轴的直线AC又CD平行于y轴又DEAC=3【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.17、1【解析】【分析】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可【详解】把x=2代入kx2+(k22)x+2k+4=0得4k+2k24+2k+4=0,整理得k2+1k=0,解得k1=0,k2=1,因为k0,所以k的值为1故答案为:1【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解三、解答题(共7小题,满分69分)18、 (1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案【详解】解:(1)了解很少的有30人,占50%,接受问卷调查的学生共有:30÷50%=60(人);扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为60,90;(2)60153010=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.19、(4)A高中观点4 446;(4)456人;(4)【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;(4)800×44%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种所以恰好选到4位女同学的概率=考点:4列表法与树状图法;4用样本估计总体;4扇形统计图20、(4)500;(4)440,作图见试题解析;(4)4.4【解析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,本次调查共抽样了500名学生; (4)4.5小时的人数为:500×4.4=440(人),如图所示:(4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时考点:4频数(率)分布直方图;4扇形统计图;4加权平均数21、见解析【解析】试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得BCEDCG,则可得BE=DG;应用:由ADBC,BE=DG,可得SABE+SCDE=SBEC=SCDG=8,又由AE=3ED,可求得CDE的面积,继而求得答案试题解析:探究:四边形ABCD、四边形CEFG均为菱形,BC=CD,CE=CG,BCD=A,ECG=FA=F,BCD=ECGBCD-ECD=ECG-ECD,即BCE=DCG在BCE和DCG中, BCEDCG(SAS),BE=DG应用:四边形ABCD为菱形,ADBC,BE=DG,SABE+SCDE=SBEC=SCDG=8,AE=3ED,SCDE= ,SECG=SCDE+SCDG=10S菱形CEFG=2SECG=20.22、(1)证明见解析;(2)CE=1【解析】(1)根据等角对等边得OBE=OEB,由角平分线的定义可得OBE=EBC,从而可得OEB=EBC,根据内错角相等,两直线平行可得OEBC,根据两直线平行,同位角相等可得OEA=90°,从而可证AC是O的切线.(2)根据垂径定理可求BH=BF=3,根据三个角是直角的四边形是矩形,可得四边形OHCE是矩形,由矩形的对边相等可得CE=OH,在RtOBH中,利用勾股定理可求出OH的长,从而求出CE的长.【详解】(1)证明:如图,连接OE,OB=OE,OBE=OEB, BE平分ABCOBE=EBC,OEB=EBC,OEBC, ACB=90° ,OEA=ACB=90°, AC是O的切线 .(2)解:过O作OHBF,BH=BF=3,四边形OHCE是矩形,CE=OH,在RtOBH中,BH=3,OB=5,OH=1,CE=1.【点睛】本题考查切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线和垂径定理以及勾股定理的运用,具有一定的综合性23、见解析.【解析】利用矩形的性质结合平行线的性质得出CDF+ADF90°,进而得出CDFDAF,由ADBC,得出答案.【详解】四边形ABCD是矩形,ADC90°,ADBC,CDF+ADF90°,DFAE于点F,DAF+ADF90°,CDFDAF.ADBC,DAFAEB,AEBCDF.【点睛】此题主要考查了矩形的性质以及平行线的性质,正确得出CDFDAF是解题关键.24、(1)见解析;(2)见解析.【解析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC利用“SSS”得ABFDCE(2)平行四边形的性质得到两边平行,从而B+C=180°利用全等得B=C,从而得到一个直角,问题得证.【详解】(1)BE=CF,BF=BE+EF,CE=CF+EF,BF=CE四边形ABCD是平行四边形,AB=DC在ABF和DCE中,AB=DC,BF=CE,AF=DE,ABFDCE(2)ABFDCE,B=C四边形ABCD是平行四边形,ABCDB+C=180°B=C=90°平行四边形ABCD是矩形