2023届北京市海淀区首师大附中考数学对点突破模拟试卷含解析.doc
-
资源ID:87792614
资源大小:1,001KB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2023届北京市海淀区首师大附中考数学对点突破模拟试卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1小手盖住的点的坐标可能为( )ABCD2将直线y=x+a的图象向右平移2个单位后经过点A(3,3),则a的值为()A4 B4 C2 D23计算(2)23的值是( )A、1 B、2 C、1 D、24由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则()A三个视图的面积一样大B主视图的面积最小C左视图的面积最小D俯视图的面积最小5一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为( )ABCD6下列图案是轴对称图形的是()ABCD7如图已知O的内接五边形ABCDE,连接BE、CE,若ABBCCE,EDC130°,则ABE的度数为()A25°B30°C35°D40°8已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程x2bxc=0在1x3的范围内有两个相等的实数根,则c的取值范围是( )Ac=4 B5c4 C5c3或c=4 D5c3或c=49下列计算正确的是()Ax2+x3=x5Bx2x3=x5C(x2)3=x8Dx6÷x2=x310如图,O的半径为1,ABC是O的内接三角形,连接OB、OC,若BAC与BOC互补,则弦BC的长为()AB2C3D1.5二、填空题(本大题共6个小题,每小题3分,共18分)11将绕点逆时针旋转到使、在同一直线上,若,则图中阴影部分面积为_.12如图是我区某一天内的气温变化图,结合该图给出的信息写出一个正确的结论:_13如图,直线交于点,与轴负半轴,轴正半轴分别交于点,的延长线相交于点,则的值是_14若一次函数y=x+b(b为常数)的图象经过点(1,2),则b的值为_15如图,已知ABC中,ABAC5,BC8,将ABC沿射线BC方向平移m个单位得到DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是_16如图所示:在平面直角坐标系中,OCB的外接圆与y轴交于A(0,),OCB=60°,COB=45°,则OC= 三、解答题(共8题,共72分)17(8分)如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(9,10),ACx轴,点P是直线AC下方抛物线上的动点(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由18(8分)如图,已知抛物线过点A(4,0),B(2,0),C(0,4)(1)求抛物线的解析式;(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且PAB=CAC1,求点P的横坐标19(8分)如图,在平面直角坐标系中,O为坐标原点,AOB是等腰直角三角形,AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.20(8分)已知2是关于x的方程x22mx+3m0的一个根,且这个方程的两个根恰好是等腰ABC的两条边长,则ABC的周长为_21(8分)关于x的一元二次方程ax2+bx+1=1当b=a+2时,利用根的判别式判断方程根的情况;若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根22(10分)如图,一次函数yx5的图象与反比例函数y (k0)在第一象限的图象交于A(1,n)和B两点求反比例函数的解析式;在第一象限内,当一次函数yx5的值大于反比例函数y (k0)的值时,写出自变量x的取值范围23(12分)解方程:.24已知关于x的一元二次方程kx26x+10有两个不相等的实数根(1)求实数k的取值范围;(2)写出满足条件的k的最大整数值,并求此时方程的根参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案【详解】根据图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有B符合故选:B【点睛】此题考查点的坐标,解题的关键是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)2、A【解析】直接根据“左加右减”的原则求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【详解】由“右加左减”的原则可知,将直线y=-x+b向右平移2个单位所得直线的解析式为:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故选A.【点睛】本题考查了一次函数图象的平移,一次函数图象的平移规律是:y=kx+b向左平移m个单位,是y=k(x+m)+b, 向右平移m个单位是y=k(x-m)+b,即左右平移时,自变量x左加右减;y=kx+b向上平移n个单位,是y=kx+b+n, 向下平移n个单位是y=kx+b-n,即上下平移时,b的值上加下减.3、A【解析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。解答本题的关键是掌握好有理数的加法、乘方法则。4、C【解析】试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.故选C考点:三视图5、A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.6、C【解析】解:A此图形不是轴对称图形,不合题意;B此图形不是轴对称图形,不合题意;C此图形是轴对称图形,符合题意;D此图形不是轴对称图形,不合题意故选C7、B【解析】如图,连接OA,OB,OC,OE想办法求出AOE即可解决问题【详解】如图,连接OA,OB,OC,OEEBC+EDC180°,EDC130°,EBC50°,EOC2EBC100°,ABBCCE,弧AB弧BC弧CE,AOBBOCEOC100°,AOE360°3×100°60°,ABEAOE30°故选:B【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8、D【解析】解:由对称轴x=2可知:b=4,抛物线y=x24x+c,令x=1时,y=c+5,x=3时,y=c3,关于x的一元二次方程x2bxc=0在1x3的范围有实数根,当=0时,即c=4,此时x=2,满足题意当0时,(c+5)(c3)0,5c3,当c=5时,此时方程为:x2+4x+5=0,解得:x=1或x=5不满足题意,当c=3时,此时方程为:x2+4x3=0,解得:x=1或x=3此时满足题意,故5c3或c=4,故选D.点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.9、B【解析】分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案详解:A、不是同类项,无法计算,故此选项错误;B、 正确;C、 故此选项错误;D、 故此选项错误;故选:B点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键10、A【解析】分析:作OHBC于H,首先证明BOC=120,在RtBOH中,BH=OBsin60°=1×,即可推出BC=2BH=,详解:作OHBC于HBOC=2BAC,BOC+BAC=180°,BOC=120°,OHBC,OB=OC,BH=HC,BOH=HOC=60°,在RtBOH中,BH=OBsin60°=1×,BC=2BH=.故选A点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】分析:易得整理后阴影部分面积为圆心角为110°,两个半径分别为4和1的圆环的面积详解:由旋转可得ABCABCBCA=90°,BAC=30°,AB=4cm,BC=1cm,AC=1cm,ABA=110°,CBC=110°,阴影部分面积=(SABC+S扇形BAA)-S扇形BCC-SABC=×(41-11)=4cm1故答案为4点睛:本题利用旋转前后的图形全等,直角三角形的性质,扇形的面积公式求解12、这一天的最高气温约是26°【解析】根据我区某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案【详解】解:根据图象可得这一天的最高气温约是26°,故答案为:这一天的最高气温约是26°【点睛】本题考查的是函数图象问题,统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键13、【解析】连接,根据可得,并且根据圆的半径相等可得OAD、OBE都是等腰三角形,由三角形的内角和,可得C=45°,则有是等腰直角三角形,可得 即可求求解【详解】解:如图示,连接,是直径,是等腰直角三角形,【点睛】本题考查圆的性质和直角三角形的性质,能够根据圆性质得出是等腰直角三角形是解题的关键14、3【解析】把点(1,2)代入解析式解答即可【详解】解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,解得:b=3,故答案为3【点睛】本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答15、或5或1【解析】根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可【详解】解:如图(1)当在ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:则AN=3,AC=,AD=m,得:,得m=,综上所述:m为或5或1,所以答案:或5或1【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.16、1+【解析】试题分析:连接AB,由圆周角定理知AB必过圆心M,RtABO中,易知BAO=OCB=60°,已知了OA=,即可求得OB的长;过B作BDOC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长解:连接AB,则AB为M的直径RtABO中,BAO=OCB=60°,OB=OA=×=过B作BDOC于DRtOBD中,COB=45°,则OD=BD=OB=RtBCD中,OCB=60°,则CD=BD=1OC=CD+OD=1+故答案为1+点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键三、解答题(共8题,共72分)17、 (1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,);(3) Q(4,1)或(-3,1).【解析】(1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m22m1),根据S四边形AECPSAECSAPC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出BACPCA45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t.【详解】解:(1)将A(0,1),B(9,10)代入函数解析式得:×819bc10,c1,解得b2,c1,所以抛物线的解析式yx22x1;(2)ACx轴,A(0,1),x22x11,解得x16,x20(舍),即C点坐标为(6,1),点A(0,1),点B(9,10),直线AB的解析式为yx1,设P(m,m22m1),E(m,m1),PEm1(m22m1)m23m.ACPE,AC6,S四边形AECPSAECSAPCACEFACPFAC(EFPF)ACEP×6(m23m)m29m.0<m<6,当m时,四边形AECP的面积最大值是,此时P();(3)yx22x1(x3)22,P(3,2),PFyFyp3,CFxFxC3,PFCF,PCF45,同理可得EAF45,PCFEAF,在直线AC上存在满足条件的点Q,设Q(t,1)且AB,AC6,CP,以C,P,Q为顶点的三角形与ABC相似,当CPQABC时,CQ:ACCP:AB,(6t):6,解得t4,所以Q(4,1);当CQPABC时,CQ:ABCP:AC,(6t)6,解得t3,所以Q(3,1).综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C,P,Q为顶点的三角形与ABC相似,Q点的坐标为(4,1)或(3,1).【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用面积的和差得出二次函数,又利用了二次函数的性质,平行于坐标轴的直线上两点间的距离是较大的坐标减较小的坐标;解(3)的关键是利用相似三角形的性质的出关于CQ的比例,要分类讨论,以防遗漏18、 (1)yx2x4(2)点M的坐标为(2,4)(3)或【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式; (2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM(m2)212. 当m2时,四边形OAMC面积最大,此时阴影部分面积最小; (3) 抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.先求AC4,CDC1D,AD43;设点P ,过P作PQ垂直于x轴,垂足为Q. 证PAQC1AD,得,即,解得解得n,或n,或n4(舍去).【详解】(1)抛物线的解析式为y (x4)(x2)x2x4.(2)连接OM,设点M的坐标为. 由题意知,当四边形OAMC面积最大时,阴影部分的面积最小S四边形OAMCSOAMSOCM× 4m× 4 m24m8(m2)212.当m2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,4)(3)抛物线的对称轴为直线x1,点C与点C1关于抛物线的对称轴对称,所以C1(2,4)连接CC1,过C1作C1DAC于D,则CC12.OAOC,AOC90°,CDC190°,AC4,CDC1D,AD43,设点P ,过P作PQ垂直于x轴,垂足为Q.PABCAC1,AQPADC1,PAQC1AD,即 ,化简得 (82n),即3n26n2482n,或3n26n24(82n),解得n,或n,或n4(舍去),点P的横坐标为或.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.19、 (1) B(-1.2);(2) y=;(3)见解析.【解析】(1)过A作ACx轴于点C,过B作BDx轴于点D,则可证明ACOODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PEy轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标【详解】(1)如图1,过A作ACx轴于点C,过B作BDx轴于点D,AOB为等腰三角形,AO=BO,AOB=90°,AOC+DOB=DOB+OBD=90°,AOC=OBD,在ACO和ODB中 ACOODB(AAS),A(2,1),OD=AC=1,BD=OC=2,B(-1,2);(2)抛物线过O点,可设抛物线解析式为y=ax2+bx,把A、B两点坐标代入可得,解得,经过A、B、O原点的抛物线解析式为y=x2-x;(3)四边形ABOP,可知点P在线段OA的下方,过P作PEy轴交AO于点E,如图2,设直线AO解析式为y=kx,A(2,1),k=,直线AO解析式为y=x,设P点坐标为(t,t2-t),则E(t,t),PE=t-(t2-t)=-t2+t=-(t-1)2+,SAOP=PE×2=PE-(t-1)2+,由A(2,1)可求得OA=OB=,SAOB=AOBO=,S四边形ABOP=SAOB+SAOP=-(t-1)2+=,-0,当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-)【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键本题考查知识点较多,综合性较强,难度适中20、11【解析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论【详解】将x=2代入方程,得:11m+3m=0,解得:m=1当m=1时,原方程为x28x+12=(x2)(x6)=0,解得:x1=2,x2=6,2+2=16,此等腰三角形的三边为6、6、2,此等腰三角形的周长C=6+6+2=11【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质21、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x2=x2=2【解析】分析:(2)求出根的判别式,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则,写出一组满足条件的,的值即可.详解:(2)解:由题意:,原方程有两个不相等的实数根(2)答案不唯一,满足()即可,例如:解:令,则原方程为,解得:点睛:考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.22、(1);(2)1x1.【解析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数yx5的值大于反比例函数y,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可【详解】解:(1)一次函数y=x+5的图象过点A(1,n),n=1+5,解得:n=1,点A的坐标为(1,1)反比例函数y=(k0)过点A(1,1),k=1×1=1,反比例函数的解析式为y=联立,解得:或,点B的坐标为(1,1)(2)观察函数图象,发现:当1x1.时,反比例函数图象在一次函数图象下方,当一次函数y=x+5的值大于反比例函数y=(k0)的值时,x的取值范围为1x1【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键23、 【解析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.详解:去分母,得 去括号,得 移项,得 合并同类项,得 系数化为1,得经检验,原方程的解为点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.24、(1)(2) , 【解析】【分析】(1)根据一元二次方程的定义可知k0,再根据方程有两个不相等的实数根,可知>0,从而可得关于k的不等式组,解不等式组即可得;(2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.【详解】(1) 依题意,得,解得且;(2) 是小于9的最大整数,此时的方程为,解得,. 【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.