2022-2023学年四川省宜宾市南溪区市级名校中考数学猜题卷含解析.doc
2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着BED的路线匀速行进,到达点D设运动员P的运动时间为t,到监测点的距离为y现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是()A监测点AB监测点BC监测点CD监测点D2如图,已知菱形ABCD,B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A16B12C24D183如图,ABC中,DEBC,AE2cm,则AC的长是()A2cmB4cmC6cmD8cm4下列图形中,既是中心对称图形又是轴对称图形的是()ABCD5定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等)现从两位数中任取一个,恰好是“下滑数”的概率为( )ABCD6如图是某零件的示意图,它的俯视图是()ABCD7我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( )ABCD8如图,已知点A(1,0),B(0,2),以AB为边在第一象限内作正方形ABCD,直线CD与y轴交于点G,再以DG为边在第一象限内作正方形DEFG,若反比例函数的图像经过点E,则k的值是 ( ) (A)33 (B)34 (C)35 (D)369在RtABC中C90°,A、B、C的对边分别为a、b、c,c3a,tanA的值为()ABCD310如图,DE是线段AB的中垂线,则点A到BC的距离是A4BC5D6二、填空题(共7小题,每小题3分,满分21分)11已知在RtABC中,C90°,BC5,AC12,E为线段AB的中点,D点是射线AC上的一个动点,将ADE沿线段DE翻折,得到ADE,当ADAB时,则线段AD的长为_12如图所示,在四边形ABCD中,ADAB,C=110°,它的一个外角ADE=60°,则B的大小是_13如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_.14工人师傅常用角尺平分一个任意角做法如下:如图,AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合过角尺顶点C的射线OC即是AOB的平分线做法中用到全等三角形判定的依据是_15已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_.16为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_17如图,ABC内接于O,DA、DC分别切O于A、C两点,ABC=114°,则ADC的度数为_°三、解答题(共7小题,满分69分)18(10分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?19(5分)如图,已知一次函数y1=kx+b(k0)的图象与反比例函数的图象交于A、B两点,与坐标轴交于M、N两点且点A的横坐标和点B的纵坐标都是1求一次函数的解析式;求AOB的面积;观察图象,直接写出y1y1时x的取值范围20(8分)计算:2sin60°(2)0+(_)-1+|1|21(10分)如图,将等腰直角三角形纸片ABC对折,折痕为CD展平后,再将点B折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF已知BC=1(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,PFM的形状是否发生变化?请说明理由;求PFM的周长的取值范围22(10分)如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;把A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长23(12分)如图,已知ABC中,ACB90°,D是边AB的中点,P是边AC上一动点,BP与CD相交于点E(1)如果BC6,AC8,且P为AC的中点,求线段BE的长;(2)联结PD,如果PDAB,且CE2,ED3,求cosA的值;(3)联结PD,如果BP22CD2,且CE2,ED3,求线段PD的长24(14分)问题探究(1)如图,点E、F分别在正方形ABCD的边BC、CD上,EAF=45°,则线段BE、EF、FD之间的数量关系为 ;(2)如图,在ADC中,AD=2,CD=4,ADC是一个不固定的角,以AC为边向ADC的另一侧作等边ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图,在四边形ABCD中,AB=AD,BAD=60°,BC=4,若BDCD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题解析:、由监测点监测时,函数值随的增大先减少再增大故选项错误;、由监测点监测时,函数值随的增大而增大,故选项错误;、由监测点监测时,函数值随的增大先减小再增大,然后再减小,选项正确;、由监测点监测时,函数值随的增大而减小,选项错误故选2、A【解析】由菱形ABCD,B=60°,易证得ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF的周长【详解】解:四边形ABCD是菱形,AB=BCB=60°,ABC是等边三角形,AC=AB=BC=4,以AC为边长的正方形ACEF的周长为:4AC=1故选A【点睛】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质此题难度不大,注意掌握数形结合思想的应用3、C【解析】由可得ADEABC,再根据相似三角形的性质即可求得结果.【详解】ADEABCAC=6cm故选C.考点:相似三角形的判定和性质点评:解答本题的关键是熟练掌握相似三角形的对应边成比例,注意对应字母在对应位置上.4、D【解析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A. 此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;B. 此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;C. 此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D. 此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的定义,解题的关键是熟练的掌握中心对称图形与轴对称图形的定义.5、A【解析】分析:根据概率的求法,找准两点:全部情况的总数:根据题意得知这样的两位数共有90个;符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为故选A点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=6、C【解析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【点睛】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.7、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.8、D【解析】试题分析:过点E作EMOA,垂足为M,A(1,0),B(0,2),OA-1,OB=2,又AOB=90°,AB=,AB/CD,ABO=CBG,BCG=90°,BCGAOB,BC=AB=,CG=2,CD=AD=AB=,DG=3,DE=DG=3,AE=4,BAD=90°,EAM+BAO=90°,BAO+ABO=90°,EAM=ABO,又EMA=90°,EAMABO,即,AM=8,EM=4,AM=9,E(9,4),k=4×9=36;故选D考点:反比例函数综合题9、B【解析】根据勾股定理和三角函数即可解答.【详解】解:已知在RtABC中C=90°,A、B、C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b=2x.即tanA=.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.10、A【解析】作于利用直角三角形30度角的性质即可解决问题【详解】解:作于H垂直平分线段AB,故选A【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型二、填空题(共7小题,每小题3分,满分21分)11、或【解析】延长A'D交AB于H,则A'HAB,然后根据勾股定理算出AB,推断出ADHABC,即可解答此题同的解题思路一样【详解】解:分两种情况:如图1所示:设ADx,延长A'D交AB于H,则A'HAB,AHDC90°,由勾股定理得:AB13,AA,ADHABC,即,解得:DHx,AHx,E是AB的中点,AEAB,HEAEAHx,由折叠的性质得:A'DADx,A'EAE,sinAsinA' ,解得:x ;如图2所示:设ADA'Dx,A'DAB,A'HE90°,同得:A'EAE,DHx,A'HA'DDHxx,cosAcosA' ,解得:x ;综上所述,AD的长为 或故答案为 或【点睛】此题考查了勾股定理,三角形相似,关键在于做辅助线12、40°【解析】【分析】根据外角的概念求出ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】ADE=60°,ADC=120°,ADAB,DAB=90°,B=360°CADCA=40°,故答案为40°【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键13、1x1【解析】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)图象与x轴的另一个交点坐标为(-1,0)利用图象可知:ax2+bx+c0的解集即是y0的解集,-1x1考点:二次函数与不等式(组)14、SSS【解析】由三边相等得COMCON,即由SSS判定三角全等做题时要根据已知条件结合判定方法逐个验证【详解】由图可知,CM=CN,又OM=ON,在MCO和NCO中,COMCON(SSS),AOC=BOC,即OC是AOB的平分线故答案为:SSS【点睛】本题考查了全等三角形的判定及性质要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养15、(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.16、【解析】分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论详解:平均数是12,这组数据的和=12×7=84,被墨汁覆盖三天的数的和=844×12=36,这组数据唯一众数是13,被墨汁覆盖的三个数为:10,13,13, 故答案为点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.17、48°【解析】如图,在O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出AKC的度数,利用圆周角定理可求出AOC的度数,由切线性质可知OAD=OCB=90°,可知ADC+AOC=180°,即可得答案.【详解】如图,在O上取一点K,连接AK、KC、OA、OC四边形AKCB内接于圆,AKC+ABC=180°,ABC=114°,AKC=66°,AOC=2AKC=132°,DA、DC分别切O于A、C两点,OAD=OCB=90°,ADC+AOC=180°,ADC=48°故答案为48°【点睛】本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.三、解答题(共7小题,满分69分)18、周瑜去世的年龄为16岁【解析】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1根据题意建立方程求出其值就可以求出其结论【详解】设周瑜逝世时的年龄的个位数字为x,则十位数字为x1由题意得;10(x1)+xx2,解得:x15,x26当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为16岁,完全符合题意答:周瑜去世的年龄为16岁【点睛】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键19、(1)y1=x+1,(1)6;(3)x1或0x4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式;(1)将两条坐标轴作为AOB的分割线,求得AOB的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可试题解析:(1)设点A坐标为(1,m),点B坐标为(n,1)一次函数y1=kx+b(k0)的图象与反比例函数y1=的图象交于A、B两点将A(1,m)B(n,1)代入反比例函数y1=可得,m=4,n=4将A(1,4)、B(4,1)代入一次函数y1=kx+b,可得,解得一次函数的解析式为y1=x+1;,(1)在一次函数y1=x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1y1时,x的取值范围为:x1或0x4考点:1、一次函数,1、反比例函数,3、三角形的面积20、2+1【解析】根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解【详解】原式=-1+3+= -1+3+=2+1.【点睛】本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键21、(1)CF=;(2)PFM的形状是等腰直角三角形,不会发生变化,理由见解析;PFM的周长满足:2+2(1+)y1+1【解析】(1)由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1x,在RtCFM中,根据FM2=CF2+CM2,构建方程即可解决问题;(2)PFM的形状是等腰直角三角形,想办法证明POFMOC,可得PFO=MCO=15°,延长即可解决问题;设FM=y,由勾股定理可知:PF=PM=y,可得PFM的周长=(1+)y,由2y1,可得结论【详解】(1)M为AC的中点,CM=AC=BC=2,由折叠的性质可知,FB=FM,设CF=x,则FB=FM=1x,在RtCFM中,FM2=CF2+CM2,即(1x)2=x2+22,解得,x=,即CF=;(2)PFM的形状是等腰直角三角形,不会发生变化,理由如下:由折叠的性质可知,PMF=B=15°,CD是中垂线,ACD=DCF=15°,MPC=OPM,POMPMC,=,=,EMC=AEM+A=CMF+EMF,AEM=CMF,DPE+AEM=90°,CMF+MFC=90°,DPE=MPC,DPE=MFC,MPC=MFC,PCM=OCF=15°,MPCOFC, ,POF=MOC,POFMOC,PFO=MCO=15°,PFM是等腰直角三角形;PFM是等腰直角三角形,设FM=y,由勾股定理可知:PF=PM=y,PFM的周长=(1+)y,2y1,PFM的周长满足:2+2(1+)y1+1【点睛】本题考查三角形综合题、等腰直角三角形的性质和判定、翻折变换、相似三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型22、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算23、(1)(2)(3) .【解析】(1)由勾股定理求出BP的长, D是边AB的中点,P为AC的中点,所以点E是ABC的重心,然后求得BE的长.(2)过点B作BFCA交CD的延长线于点F,所以,然后可求得EF=8,所以,所以,因为PDAB,D是边AB的中点,在ABC中可求得cosA的值.(3)由,PBD=ABP,证得PBDABP,再证明DPEDCP得到,PD可求.【详解】解:(1)P为AC的中点,AC=8,CP=4,ACB=90°,BC=6,BP=,D是边AB的中点,P为AC的中点,点E是ABC的重心,(2)过点B作BFCA交CD的延长线于点F,BD=DA,FD=DC,BF=AC,CE=2,ED=3,则CD=5,EF=8,,设CP=k,则PA=3k,PDAB,D是边AB的中点,PA=PB=3k,,,(3)ACB=90°,D是边AB的中点,,,,PBD=ABP,PBDABP,BPD=A,A=DCA,DPE=DCP,PDE=CDP,DPEDCP,,DE=3,DC=5,.【点睛】本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键.24、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2【解析】(1)作辅助线,首先证明ABEADG,再证明AEFAEG,进而得到EF=FG问题即可解决;(2)将ABD绕着点B顺时针旋转60°,得到BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,DBE=60°,可得DE=BD,根据DEDC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EFBC于点F,连接DE,由旋转的性质得DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EFBC,可求出BF,EF,以BC为直径作F,则点D在F上,连接DF,可求出DF,则AC=DEDF+EF,代入数值即可解决问题.【详解】(1)如图,延长CD至G,使得DG=BE,正方形ABCD中,AB=AD,B=AFG=90°,ABEADG,AE=AG,BAE=DAG,EAF=45°,BAD=90°,BAE+DAF=45°,DAG+DAF=45°,即GAF=EAF,又AF=AF,AEFAEG,EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在在等边三角形ABC中,AB=BC,ABC=60°,如图,将ABD绕着点B顺时针旋转60°,得到BCE,连接DE由旋转可得,CE=AD=2,BD=BE,DBE=60°,DBE是等边三角形,DE=BD,在DCE中,DEDC+CE=4+2=6,当D、C、E三点共线时,DE存在最大值,且最大值为6,BD的最大值为6;(3)存在如图,以BC为边作等边三角形BCE,过点E作EFBC于点F,连接DE,AB=BD,ABC=DBE,BC=BE,ABCDBE,DE=AC,在等边三角形BCE中,EFBC,BF=BC=2,EF=BF=×2=2,以BC为直径作F,则点D在F上,连接DF,DF=BC=×4=2,AC=DEDF+EF=2+2,即AC的最大值为2+2【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.