2022-2023学年内蒙古呼和浩特回民中学中考数学最后冲刺浓缩精华卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A3a+2bB3a+4bC6a+2bD6a+4b2如图,在平面直角坐标系中RtABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,ABC=30°,把RtABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A的坐标为()A(4,2)B(4,2+)C(2,2+)D(2,2)3小苏和小林在如图所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图所示.下列叙述正确的是( ).A两人从起跑线同时出发,同时到达终点B小苏跑全程的平均速度大于小林跑全程的平均速度C小苏前跑过的路程大于小林前跑过的路程D小林在跑最后的过程中,与小苏相遇2次4下列各式中,正确的是()A(xy)=xyB(2)1=CD5长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A米 B米C米 D米6计算的结果是( )ABCD27有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )A4.8,6,6B5,5,5C4.8,6,5D5,6,68如图,在三角形ABC中,ACB=90°,B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形ABC,若点B恰好落在线段AB上,AC、AB交于点O,则COA的度数是()A50°B60°C70°D80°9一元二次方程(x+3)(x-7)=0的两个根是Ax1=3,x2=-7 Bx1=3,x2=7Cx1=-3,x2=7 Dx1=-3,x2=-710如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D11二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知RtABC中,B=90°,A=60°,AC=2+4,点M、N分别在线段AC、AB上,将ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当DCM为直角三角形时,折痕MN的长为_12现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线 图象上的概率为_13计算:_14如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为_15已知代数式2xy的值是,则代数式6x+3y1的值是_16关于x的一元二次方程x22xm10有两个相等的实数根,则m的值为_三、解答题(共8题,共72分)17(8分)如图,已知是的外接圆,圆心在的外部,求的半径.18(8分)如图,ABCD,12,求证:AMCN19(8分)如图,在RtABC中,C=90°,以BC为直径的O交AB于点D,切线DE交AC于点E.(1)求证:A=ADE;(2)若AD=8,DE=5,求BC的长20(8分)计算:+( )1+|1|4sin45°21(8分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“”表示被污损的数据)请解答下列问题:成绩分组频数频率50x6080.1660x7012a70x800.580x9030.0690x100bc合计1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率22(10分)某中学为了解八年级学习体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名23(12分)已知,抛物线y=x2+bx+c经过点A(1,0)和C(0,3)(1)求抛物线的解析式;(2)设点M在抛物线的对称轴上,当MAC是以AC为直角边的直角三角形时,求点M的坐标24已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据这块矩形较长的边长边长为3a的正方形的边长边长为2b的小正方形的边长边长为2b的小正方形的边长的2倍代入数据即可.【详解】依题意有:3a2b+2b×2=3a2b+4b=3a+2b故这块矩形较长的边长为3a+2b故选A【点睛】本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.2、D【解析】解:作ADBC,并作出把RtABC先绕B点顺时针旋转180°后所得A1BC1,如图所示AC=2,ABC=10°,BC=4,AB=2,AD=,BD=1点B坐标为(1,0),A点的坐标为(4,)BD=1,BD1=1,D1坐标为(2,0),A1坐标为(2,)再向下平移2个单位,A的坐标为(2,2)故选D点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键3、D【解析】A.由图可看出小林先到终点,A错误;B.全程路程一样,小林用时短,所以小林的平均速度大于小苏的平均速度,B错误;C.第15 秒时,小苏距离起点较远,两人都在返回起点的过程中,据此可判断小林跑的路程大于小苏跑的路程,C错误;D.由图知两条线的交点是两人相遇的点,所以是相遇了两次,正确.故选D.4、B【解析】A.括号前是负号去括号都变号; B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法【详解】A选项,(xy)=x+y,故A错误;B选项, (2)1=,故B正确;C选项,故C错误;D选项,22,故D错误【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知识点是解题的关键5、D【解析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米故选D6、C【解析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.【详解】原式=32·=3=.故选C.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.7、C【解析】解:在这一组数据中6是出现次数最多的,故众数是6;而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,平均数是:(3+4+5+6+6)÷5=4.8,故选C【点睛】本题考查众数;算术平均数;中位数8、B【解析】试题分析:在三角形ABC中,ACB=90°,B=50°,A=180°ACBB=40°由旋转的性质可知:BC=BC,B=BBC=50°又BBC=A+ACB=40°+ACB,ACB=10°,COA=AOB=OBC+ACB=B+ACB=60°故选B考点:旋转的性质9、C【解析】根据因式分解法直接求解即可得【详解】(x+3)(x7)=0,x+3=0或x7=0,x1=3,x2=7,故选C【点睛】本题考查了解一元二次方程因式分解法,根据方程的特点选择恰当的方法进行求解是解题的关键.10、A【解析】分析:根据多边形的内角和公式及外角的特征计算详解:多边形的外角和是360°,根据题意得:110°(n-2)=3×360°解得n=1故选A点睛:本题主要考查了多边形内角和公式及外角的特征求多边形的边数,可以转化为方程的问题来解决二、填空题(本大题共6个小题,每小题3分,共18分)11、或【解析】分析:依据DCM为直角三角形,需要分两种情况进行讨论:当CDM=90°时,CDM是直角三角形;当CMD=90°时,CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长详解:分两种情况:如图,当CDM=90°时,CDM是直角三角形,在RtABC中,B=90°,A=60°,AC=2+4,C=30°,AB=AC=+2,由折叠可得,MDN=A=60°,BDN=30°,BN=DN=AN,BN=AB=,AN=2BN=,DNB=60°,ANM=DNM=60°,AMN=60°,AN=MN=;如图,当CMD=90°时,CDM是直角三角形,由题可得,CDM=60°,A=MDN=60°,BDN=60°,BND=30°,BD=DN=AN,BN=BD,又AB=+2,AN=2,BN=,过N作NHAM于H,则ANH=30°,AH=AN=1,HN=,由折叠可得,AMN=DMN=45°,MNH是等腰直角三角形,HM=HN=,MN=,故答案为:或点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等12、【解析】根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案【详解】画树状图得:共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线 图象上的只有(3,2),点(a,b)在图象上的概率为【点睛】本题考查了用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验13、【解析】根据异分母分式加减法法则计算即可【详解】原式故答案为:【点睛】本题考查了分式的加减,关键是掌握分式加减的计算法则14、 【解析】试题解析:连接AE,在Rt三角形ADE中,AE=4,AD=2,DEA=30°,ABCD,EAB=DEA=30°,的长度为:=.考点:弧长的计算.15、【解析】由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可【详解】2x-y=,-6x+3y=-原式=-1=-故答案为-【点睛】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键16、2.【解析】试题分析:已知方程x22x=0有两个相等的实数根,可得:44(m1)4m80,所以,m2.考点:一元二次方程根的判别式.三、解答题(共8题,共72分)17、4【解析】已知ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在RtOBH中,用半径表示出OH的长,即可用勾股定理求得半径的长【详解】作于点,则直线为的中垂线,直线过点,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.18、详见解析.【解析】只要证明EAM=ECN,根据同位角相等两直线平行即可证明.【详解】证明:ABCD,EAB=ECD,1=2,EAM=ECN,AMCN【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握平行线的性质和判定,属于中考基础题19、(1)见解析(2)7.5【解析】(1)只要证明A+B=90°,ADE+B=90°即可解决问题;(2)首先证明AC=2DE=10,在RtADC中,求得DC=6,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解决问题.【详解】(1)证明:连接OD,DE是切线,ODE=90°,ADE+BDO=90°,ACB=90°,A+B=90°,OD=OB,B=BDO,A=ADE;(2)连接CD,A=ADEAE=DE,BC是O的直径,ACB=90°,EC是O的切线,ED=EC,AE=EC,DE=5,AC=2DE=10,在RtADC中,DC=,设BD=x,在RtBDC中,BC2=x2+62,在RtABC中,BC2=(x+8)2-102,x2+62=(x+8)2-102,解得x=4.5,BC=【点睛】此题主要考查圆的切线问题,解题的关键是熟知切线的性质.20、 【解析】根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论【详解】解:+()1+|1|1sin15°=23+11×=23+12=1【点睛】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键21、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人. 【解析】(1)利用50x60的频数和频率,根据公式:频率频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【详解】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.24,70x80的人数为:50×0.5=25(名)b=50812253=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:1000×0.6=600(人)这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,抽取的2名同学来自同一组的概率P=【点睛】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率所求情况数与总情况数之比22、(1)50名;(2)16名;见解析;(3)56名【解析】试题分析:根据A等级的人数和百分比求出总人数;根据总人数和A、B、D三个等级的人数求出C等级的人数;利用总人数乘以D等级人数的百分比得出答案试题解析:(1)10÷20%=50(名)答:本次抽样共抽取了50名学生(2)5010204=16(名)答:测试结果为C等级的学生有16名补全图形如图所示:(3)700×(4÷50)=56(名)答:估计该中学八年级700名学生中体能测试为D等级的学生有56名考点:统计图23、(1)y=x2+2x+1;(2)当MAC是直角三角形时,点M的坐标为(1,)或(1,)【解析】(1)由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;(2)设点M的坐标为(1,m),则CM=,AC=,AM=,分ACM=90°和CAM=90°两种情况,利用勾股定理可得出关于m的方程,解之可得出m的值,进而即可得出点M的坐标【详解】(1)将A(1,0)、C(0,1)代入y=x2+bx+c中,得:,解得:,抛物线的解析式为y=x2+2x+1(2)y=x2+2x+1=(x1)2+4,设点M的坐标为(1,m),则CM=,AC=,AM=分两种情况考虑:当ACM=90°时,有AM2=AC2+CM2,即4+m2=10+1+(m1)2,解得:m=,点M的坐标为(1,);当CAM=90°时,有CM2=AM2+AC2,即1+(m1)2=4+m2+10,解得:m=,点M的坐标为(1,)综上所述:当MAC是直角三角形时,点M的坐标为(1,)或(1,)【点睛】本题考查二次函数的综合问题,解题的关键是掌握待定系数法求二次函数解析式、二次函数图象的点的坐标特征以及勾股定理等知识点24、(1),;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,该方程的一个根为1,.解得.a的值为,该方程的另一根为.(2),不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.