2022-2023学年上海市闸北区高三下学期联合考试数学试题含解析.doc
2023年高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,当时,的取值范围为,则实数m的取值范围是( )ABCD2已知是第二象限的角,则( )ABCD3设全集集合,则( )ABCD4已知底面为边长为的正方形,侧棱长为的直四棱柱中,是上底面上的动点.给出以下四个结论中,正确的个数是( )与点距离为的点形成一条曲线,则该曲线的长度是;若面,则与面所成角的正切值取值范围是;若,则在该四棱柱六个面上的正投影长度之和的最大值为.ABCD5甲、乙、丙、丁四位同学利用暑假游玩某风景名胜大峡谷,四人各自去景区的百里绝壁、千丈瀑布、原始森林、远古村寨四大景点中的一个,每个景点去一人已知:甲不在远古村寨,也不在百里绝壁;乙不在原始森林,也不在远古村寨;“丙在远古村寨”是“甲在原始森林”的充分条件;丁不在百里绝壁,也不在远古村寨若以上语句都正确,则游玩千丈瀑布景点的同学是( )A甲B乙C丙D丁6已知复数满足,则( )ABCD7记的最大值和最小值分别为和若平面向量、,满足,则( )ABCD8设函数,则使得成立的的取值范围是( )ABCD9函数的图象大致是()ABCD10已知函数,则( )AB1C-1D011为研究某咖啡店每日的热咖啡销售量和气温之间是否具有线性相关关系,统计该店2017年每周六的销售量及当天气温得到如图所示的散点图(轴表示气温,轴表示销售量),由散点图可知与的相关关系为( )A正相关,相关系数的值为B负相关,相关系数的值为C负相关,相关系数的值为D正相关,相关负数的值为12如图,在三棱锥中,平面,现从该三棱锥的个表面中任选个,则选取的个表面互相垂直的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知为双曲线:的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为_14已知数列的前项和为,则满足的正整数的所有取值为_15设双曲线的左焦点为,过点且倾斜角为45°的直线与双曲线的两条渐近线顺次交于,两点若,则的离心率为_16已知复数,其中是虚数单位若的实部与虚部相等,则实数的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设都是正数,且,求证:18(12分)椭圆的右焦点,过点且与轴垂直的直线被椭圆截得的弦长为.(1)求椭圆的方程;(2)过点且斜率不为0的直线与椭圆交于,两点.为坐标原点,为椭圆的右顶点,求四边形面积的最大值.19(12分)在中,(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围20(12分)已知是等腰直角三角形,分别为的中点,沿将折起,得到如图所示的四棱锥()求证:平面平面()当三棱锥的体积取最大值时,求平面与平面所成角的正弦值21(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.图:设备改造前样本的频率分布直方图表:设备改造后样本的频率分布表质量指标值频数2184814162(1)求图中实数的值;(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.22(10分)如图,已知椭圆的右焦点为,为椭圆上的两个动点,周长的最大值为8.()求椭圆的标准方程;()直线经过,交椭圆于点,直线与直线的倾斜角互补,且交椭圆于点,求证:直线与直线的交点在定直线上.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.【详解】当时,令,则;,则,函数在单调递增,在单调递减.函数在处取得极大值为,时,的取值范围为,又当时,令,则,即,综上所述,的取值范围为.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.2、D【解析】利用诱导公式和同角三角函数的基本关系求出,再利用二倍角的正弦公式代入求解即可.【详解】因为,由诱导公式可得,即,因为,所以,由二倍角的正弦公式可得,所以.故选:D【点睛】本题考查诱导公式、同角三角函数的基本关系和二倍角的正弦公式;考查运算求解能力和知识的综合运用能力;属于中档题.3、A【解析】先求出,再与集合N求交集.【详解】由已知,又,所以.故选:A.【点睛】本题考查集合的基本运算,涉及到补集、交集运算,是一道容易题.4、C【解析】与点距离为的点形成以为圆心,半径为的圆弧,利用弧长公式,可得结论;当在(或时,与面所成角(或的正切值为最小,当在时,与面所成角的正切值为最大,可得正切值取值范围是;设,则,即,可得在前后、左右、上下面上的正投影长,即可求出六个面上的正投影长度之和【详解】如图:错误, 因为 ,与点距离为的点形成以为圆心,半径为的圆弧,长度为; 正确,因为面面,所以点必须在面对角线上运动,当在(或)时,与面所成角(或)的正切值为最小(为下底面面对角线的交点),当在时,与面所成角的正切值为最大,所以正切值取值范围是;正确,设,则,即,在前后、左右、上下面上的正投影长分别为,所以六个面上的正投影长度之,当且仅当在时取等号.故选:.【点睛】本题以命题的真假判断为载体,考查了轨迹问题、线面角、正投影等知识点,综合性强,属于难题5、D【解析】根据演绎推理进行判断【详解】由可知甲乙丁都不在远古村寨,必有丙同学去了远古村寨,由可知必有甲去了原始森林,由可知丁去了千丈瀑布,因此游玩千丈瀑布景点的同学是丁故选:D【点睛】本题考查演绎推理,掌握演绎推理的定义是解题基础6、A【解析】根据复数的运算法则,可得,然后利用复数模的概念,可得结果.【详解】由题可知:由,所以所以故选:A【点睛】本题主要考查复数的运算,考验计算,属基础题.7、A【解析】设为、的夹角,根据题意求得,然后建立平面直角坐标系,设,根据平面向量数量积的坐标运算得出点的轨迹方程,将和转化为圆上的点到定点距离,利用数形结合思想可得出结果.【详解】由已知可得,则,建立平面直角坐标系,设,由,可得,即,化简得点的轨迹方程为,则,则转化为圆上的点与点的距离,转化为圆上的点与点的距离,.故选:A.【点睛】本题考查和向量与差向量模最值的求解,将向量坐标化,将问题转化为圆上的点到定点距离的最值问题是解答的关键,考查化归与转化思想与数形结合思想的应用,属于中等题.8、B【解析】由奇偶性定义可判断出为偶函数,由单调性的性质可知在上单调递增,由此知在上单调递减,从而将所求不等式化为,解绝对值不等式求得结果.【详解】由题意知:定义域为,为偶函数,当时,在上单调递增,在上单调递减,在上单调递增,则在上单调递减,由得:,解得:或,的取值范围为.故选:.【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.9、C【解析】根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】,函数为奇函数,排除选项A,B;又当时,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.10、A【解析】由函数,求得,进而求得的值,得到答案.【详解】由题意函数,则,所以,故选A.【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.11、C【解析】根据正负相关的概念判断【详解】由散点图知随着的增大而减小,因此是负相关相关系数为负故选:C【点睛】本题考查变量的相关关系,考查正相关和负相关的区别掌握正负相关的定义是解题基础12、A【解析】根据线面垂直得面面垂直,已知平面,由,可得平面,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率【详解】由已知平面,可得,从该三棱锥的个面中任选个面共有种不同的选法,而选取的个表面互相垂直的有种情况,故所求事件的概率为故选:A【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由点,关于直线对称,得到直线的斜率,再根据直线过点,可求出直线方程,又,中点在直线上,代入直线的方程,化简整理,即可求出结果.【详解】因为为双曲线:的左焦点,所以,又点,关于直线对称,所以可得直线的方程为,又,中点在直线上,所以,整理得,又,所以,故,解得,因为,所以.故答案为【点睛】本题主要考查双曲线的简单性质,先由两点对称,求出直线斜率,再由焦点坐标求出直线方程,根据中点在直线上,即可求出结果,属于常考题型.14、20,21【解析】由题意知数列奇数项和偶数项分别为等差数列和等比数列,则根据为奇数和为偶数分别算出求和公式,代入数值检验即可.【详解】解: 由题意知数列的奇数项构成公差为的等差数列,偶数项构成公比为的等比数列,则;.当时, ,.当时, ,.由此可知,满足的正整数的所有取值为20,21.故答案为: 20,21【点睛】本题考查等差数列与等比数列通项与求和公式,是综合题,分清奇数项和偶数项是解题的关键.15、【解析】设直线的方程为,与联立得到A点坐标,由得,代入可得,即得解.【详解】由题意,直线的方程为,与联立得,由得,从而,即,从而离心率故答案为:【点睛】本题考查了双曲线的离心率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.16、【解析】直接由复数代数形式的乘法运算化简,结合已知条件即可求出实数的值.【详解】解:的实部与虚部相等,所以,计算得出.故答案为:【点睛】本题考查复数的乘法运算和复数的概念,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析【解析】利用比较法进行证明:把代数式展开、作差、化简可得,可证得成立,同理可证明,由此不等式得证.【详解】证明:因为,,所以 , 成立,又都是正数,同理,【点睛】本题考查利用比较法证明不等式;考查学生的逻辑推理能力和运算求解能力;把差变形为因式乘积的形式是证明本题的关键;属于中档题。18、(1)(2)最大值.【解析】(1)根据通径和即可求(2)设直线方程为,联立椭圆,利用,用含的式子表示出,用换元,可得,最后用均值不等式求解.【详解】解:(1)依题意有,所以椭圆的方程为.(2)设直线的方程为,联立,得.所以,.所以.令,则,所以,因,则,所以,当且仅当,即时取得等号,即四边形面积的最大值.【点睛】考查椭圆方程的求法和椭圆中四边形面积最大值的求法,是难题.19、(1)(2)【解析】(1)先利用同角的三角函数关系求得,再由求解即可;(2)在中,由正弦定理可得,则,再由求解即可.【详解】解:(1)在中,所以,所以 (2)由(1)可知,所以,在中,因为,所以,因为,所以 , 所以.【点睛】本题考查已知三角函数值求值,考查正弦定理的应用.20、 ()见解析. () .【解析】(I)证明平面得出平面,根据面面垂直的判定定理得到结论;(II)当平面时,棱锥体积最大,建立空间坐标系,计算两平面的法向量,计算法向量的夹角得出答案【详解】(I)证明: 分别为的中点 ,又平面平面,又平面平面平面(II),为定值当平面时,三棱锥的体积取最大值以为原点,以为坐标轴建立空间直角坐标系则,设平面的法向量为,则即,令可得平面 是平面的一个法向量平面与平面所成角的正弦值为【点睛】本题考查了面面垂直的判定,二面角的计算,关键是能够根据体积的最值确定垂直关系,从而可以建立起空间直角坐标系,利用空间向量法求得二面角,属于中档题21、(1)(2)详见解析【解析】(1)由频率分布直方图中所有频率(小矩形面积)之和为1可计算出值;(2)由频数分布表知一等品、二等品、三等品的概率分别为.,选2件产品,支付的费用的所有取值为240,300,360,420,480,由相互独立事件的概率公式分别计算出概率,得概率分布列,由公式计算出期望【详解】解:(1)据题意,得所以(2)据表1分析知,从所有产品中随机抽一件是一等品、二等品、三等品的概率分别为.随机变量的所有取值为240,300,360,420,480.随机变量的分布列为240300360420480所以(元)【点睛】本题考查频率分布直方图,频数分布表,考查随机变量的概率分布列和数学期望,解题时掌握性质:频率分布直方图中所有频率和为1本题考查学生的数据处理能力,属于中档题22、();()详见解析.【解析】()由椭圆的定义可得,周长取最大值时,线段过点,可求出,从而求出椭圆的标准方程;()设直线,直线,.把直线与直线的方程分别代入椭圆的方程,利用韦达定理和弦长公式求出和,根据求出的值.最后直线与直线的方程联立,求两直线的交点即得结论.【详解】()设的周长为,则,当且仅当线段过点时“”成立.,又,椭圆的标准方程为.()若直线的斜率不存在,则直线的斜率也不存在,这与直线与直线相交于点矛盾,所以直线的斜率存在.设,.将直线的方程代入椭圆方程得:.,,.同理,.由得,此时.直线, 联立直线与直线的方程得,即点在定直线.【点睛】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的逻辑推理能力和运算能力,属于难题.