2022-2023学年北京市回民学校高考数学二模试卷含解析.doc
2023年高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的实轴长为,离心率为,、分别为双曲线的左、右焦点,点在双曲线上运动,若为锐角三角形,则的取值范围是( )ABCD2已知复数满足,(为虚数单位),则( )ABCD33已知 ,且是的充分不必要条件,则的取值范围是( )ABCD4下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是( )ABCD5已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为ABC2D6设集合、是全集的两个子集,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7易·系辞上有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这10个数中任取3个数,则这3个数中至少有2个阳数且能构成等差数列的概率为( ) ABCD8已知集合,则( )ABCD9已知,则的大小关系为( )ABCD10周易历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“-”当作数字“0”,则八卦所代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震0011坎0102兑0113依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( )A18B17C16D1511已知F是双曲线(k为常数)的一个焦点,则点F到双曲线C的一条渐近线的距离为( )A2kB4kC4D212生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,曲线在点处的切线与x轴相交于点A,其中e为自然对数的底数.若点,的面积为3,则的值是_.14已知,分别为内角,的对边,则的面积为_.15函数的单调增区间为_.16直线过圆的圆心,则的最小值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.18(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)写出直线的普通方程和曲线的直角坐标方程;(2)设直线与曲线相交于两点,的顶点也在曲线上运动,求面积的最大值.19(12分)已知,.(1)解不等式;(2)若方程有三个解,求实数的取值范围.20(12分)已知数列满足(),数列的前项和,(),且,(1)求数列的通项公式:(2)求数列的通项公式(3)设,记是数列的前项和,求正整数,使得对于任意的均有21(12分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面与平面所成二面角的正弦值22(10分)已知椭圆:的左、右焦点分别为,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.(1)求椭圆的方程;(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由已知先确定出双曲线方程为,再分别找到为直角三角形的两种情况,最后再结合即可解决.【详解】由已知可得,所以,从而双曲线方程为,不妨设点在双曲线右支上运动,则,当时,此时,所以,所以;当轴时,所以,又为锐角三角形,所以.故选:A.【点睛】本题考查双曲线的性质及其应用,本题的关键是找到为锐角三角形的临界情况,即为直角三角形,是一道中档题.2、A【解析】,故,故选A.3、D【解析】“是的充分不必要条件”等价于“是的充分不必要条件”,即中变量取值的集合是中变量取值集合的真子集.【详解】由题意知:可化简为,所以中变量取值的集合是中变量取值集合的真子集,所以.【点睛】利用原命题与其逆否命题的等价性,对是的充分不必要条件进行命题转换,使问题易于求解.4、C【解析】令圆的半径为1,则,故选C5、B【解析】求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故 ,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.6、C【解析】作出韦恩图,数形结合,即可得出结论.【详解】如图所示,同时.故选:C.【点睛】本题考查集合关系及充要条件,注意数形结合方法的应用,属于基础题.7、C【解析】先根据组合数计算出所有的情况数,再根据“3个数中至少有2个阳数且能构成等差数列”列举得到满足条件的情况,由此可求解出对应的概率.【详解】所有的情况数有:种,3个数中至少有2个阳数且能构成等差数列的情况有:,共种,所以目标事件的概率.故选:C.【点睛】本题考查概率与等差数列的综合,涉及到背景文化知识,难度一般.求解该类问题可通过古典概型的概率求解方法进行分析;当情况数较多时,可考虑用排列数、组合数去计算.8、A【解析】考虑既属于又属于的集合,即得.【详解】.故选:【点睛】本题考查集合的交运算,属于基础题.9、A【解析】根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【详解】因为,所以.因为,所以,因为,为增函数,所以所以,故选:A.【点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.10、B【解析】由题意可知“屯”卦符号“”表示二进制数字010001,将其转化为十进制数即可.【详解】由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数字010001,转化为十进制数的计算为1×20+1×24=1故选:B【点睛】本题主要考查数制是转化,新定义知识的应用等,意在考查学生的转化能力和计算求解能力.11、D【解析】分析可得,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可.【详解】当时,等式不是双曲线的方程;当时,可化为,可得虚半轴长,所以点F到双曲线C的一条渐近线的距离为2.故选:D【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.12、C【解析】分情况讨论,由间接法得到“数”必须排在前两节,“礼”和“乐”必须分开的事件个数,不考虑限制因素,总数有种,进而得到结果.【详解】当“数”位于第一位时,礼和乐相邻有4种情况,礼和乐顺序有2种,其它剩下的有种情况,由间接法得到满足条件的情况有 当“数”在第二位时,礼和乐相邻有3种情况,礼和乐顺序有2种,其它剩下的有种,由间接法得到满足条件的情况有共有:种情况,不考虑限制因素,总数有种,故满足条件的事件的概率为: 故答案为:C.【点睛】解排列组合问题要遵循两个原则:按元素(或位置)的性质进行分类;按事情发生的过程进行分步具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置)二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对求导,再根据点的坐标可得切线方程,令,可得点横坐标,由的面积为3,求解即得.【详解】由题,切线斜率,则切线方程为,令,解得,又的面积为3,解得.故答案为:【点睛】本题考查利用导数研究函数的切线,难度不大.14、【解析】根据题意,利用余弦定理求得,再运用三角形的面积公式即可求得结果.【详解】解:由于,由余弦定理得,解得,的面积.故答案为:.【点睛】本题考查余弦定理的应用和三角形的面积公式,考查计算能力.15、【解析】先求出导数,再在定义域上考虑导数的符号为正时对应的的集合,从而可得函数的单调增区间.【详解】函数的定义域为.,令,则,故函数的单调增区间为:.故答案为:.【点睛】本题考查导数在函数单调性中的应用,注意先考虑函数的定义域,再考虑导数在定义域上的符号,本题属于基础题.16、【解析】直线mxny10(m0,n0)经过圆x2+y22x+2y10的圆心(1,1),可得m+n1,再利用“乘1法”和基本不等式的性质即可得出.【详解】mxny10(m0,n0)经过圆x2+y22x+2y10的圆心(1,1),m+n10,即m+n1.()(m+n)22+24,当且仅当mn时取等号.则的最小值是4.故答案为:4.【点睛】本题考查了圆的标准方程、“乘1法”和基本不等式的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()()见证明【解析】()求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;()由是减函数,且可得,当时,则,即,两边同除以得,即,从而 ,两边取对数 ,然后再证明恒成立即可,构造函数,通过求导证明即可【详解】解:()的定义域为,.由是减函数得,对任意的,都有恒成立.设.,由知,当时,;当时,在上单调递增,在上单调递减,在时取得最大值.又,对任意的,恒成立,即的最大值为.,解得.()由是减函数,且可得,当时,即.两边同除以得,即.从而 ,所以 .下面证;记,. ,在上单调递增,在上单调递减,而,当时,恒成立,在上单调递减,即时,当时,.,当时,即.综上可得,.【点睛】本题考查了导数与函数的单调性的关系,考查了函数的最值,考查了构造函数的能力,考查了逻辑推理能力与计算求解能力,属于难题,18、(1):,:;(2)【解析】(1)由直线参数方程消去参数即可得直线的普通方程,根据极坐标方程和直角坐标方程互化的公式即可得曲线的直角坐标方程;(2)由即可得的底,由点到直线的距离的最大值为即可得高的最大值,即可得解.【详解】(1)由消去参数得直线的普通方程为,由得,曲线的直角坐标方程为;(2)曲线即,圆心到直线的距离,所以,又 点到直线的距离的最大值为,所以面积的最大值为.【点睛】本题考查了参数方程、极坐标方程和直角坐标方程的互化,考查了直线与圆的位置关系,属于中档题.19、(1);(2).【解析】(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果; (2).作出函数的图象, 当直线与函数的图象有三个公共点时,方程有三个解,由图可得结果.【详解】(1)不等式,即为.当时,即化为,得,此时不等式的解集为,当时,即化为,解得,此时不等式的解集为.综上,不等式的解集为.(2)即.作出函数的图象如图所示,当直线与函数的图象有三个公共点时,方程有三个解,所以.所以实数的取值范围是.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想20、(1)()(2),(3)【解析】(1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可;(2)由递推公式,得, 结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,记,利用函数单调性可求的范围,从而列不等式可解.【详解】解:(1)因为数列满足();当时,检验当时, 成立.所以,数列的通项公式为()(2)由,得, 所以, 由,得,即, 所以, 由,得,因为,所以,上式同除以,得,即,所以,数列时首项为1,公差为1的等差数列,故,(3)因为所以,记,当时,所以,当时,数列为单调递减,当时,从而,当时,因此,所以,对任意的,综上,【点睛】本题考在数列通项公式的求法、等差数列的定义及通项公式、数列的单调性,考查考生的逻辑思维能力、运算求解能力以及化归与转化思想、分类讨论思想.21、见解析【解析】(1)如图,连接,交于点,连接,则为的中点,因为为的中点,所以,又,所以,从而,四点共面因为平面,平面,平面平面,所以又,所以四边形为平行四边形,所以,所以(2)因为,为的中点,所以,又三棱柱是直三棱柱,所以,互相垂直,分别以,的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,因为,所以,所以,设平面的法向量为,则,即,令,可得,所以平面的一个法向量为设平面的法向量为,则,即,令,可得,所以平面的一个法向量为,所以,所以平面与平面所成二面角的正弦值为22、(1)(2)存在;实数的取值范围是【解析】(1)根据椭圆定义计算,再根据,的关系计算即可得出椭圆方程;(2)设直线方程为,与椭圆方程联立方程组,求出的范围,根据根与系数的关系求出的中点坐标,求出的中垂线与轴的交点横,得出关于的函数,利用基本不等式得出的范围【详解】(1)由题意可知,又,椭圆的方程为:(2)若存在点,使得以,为邻边的平行四边形是菱形,则为线段的中垂线与轴的交点设直线的方程为:,联立方程组,消元得:,又,故由根与系数的关系可得,设的中点为,则,线段的中垂线方程为:,令可得,即,故,当且仅当即时取等号,且的取值范围是,【点睛】本题主要考查了椭圆的性质,考查直线与椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理能力