欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022-2023学年内蒙古阿荣旗第一中学高考冲刺数学模拟试题含解析.doc

    • 资源ID:87794974       资源大小:2.20MB        全文页数:20页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022-2023学年内蒙古阿荣旗第一中学高考冲刺数学模拟试题含解析.doc

    2023年高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设全集U=R,集合,则( )Ax|-1 <x<4Bx|-4<x<1Cx|-1x4Dx|-4x12已知函数的定义域为,且,当时,.若,则函数在上的最大值为( )A4B6C3D83已知正项数列满足:,设,当最小时,的值为( )ABCD4某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下:小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的;小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( )A小王或小李B小王C小董D小李5如图,在中,是上一点,若,则实数的值为( )ABCD6已知,则的取值范围是()A0,1BC1,2D0,27已知的面积是, ,则( )A5B或1C5或1D8已知函数的值域为,函数,则的图象的对称中心为( )ABCD9在关于的不等式中,“”是“恒成立”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为( )ABCD11古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为 ABCD12设全集,集合,.则集合等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在二项式的展开式中,的系数为_.14已知函数,曲线与直线相交,若存在相邻两个交点间的距离为,则可取到的最大值为_.15已知函数的定义域为R,导函数为,若,且,则满足的x的取值范围为_.16函数的图像如图所示,则该函数的最小正周期为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某工厂的机器上有一种易损元件A,这种元件在使用过程中发生损坏时,需要送维修处维修工厂规定当日损坏的元件A在次日早上 8:30 之前送到维修处,并要求维修人员当日必须完成所有损坏元件A的维修工作每个工人独立维修A元件需要时间相同维修处记录了某月从1日到20日每天维修元件A的个数,具体数据如下表:日期 1 日 2 日 3 日 4 日 5 日 6 日 7 日 8 日 9 日 10 日 元件A个数 9 15 12 18 12 18 9 9 24 12 日期 11 日 12 日 13 日 14 日 15 日 16 日 17 日 18 日 19 日 20 日 元件A个数 12 24 15 15 15 12 15 15 15 24 从这20天中随机选取一天,随机变量X表示在维修处该天元件A的维修个数()求X的分布列与数学期望;()若a,b,且b-a=6,求最大值;()目前维修处有两名工人从事维修工作,为使每个维修工人每天维修元件A的个数的数学期望不超过4个,至少需要增加几名维修工人?(只需写出结论)18(12分)设为等差数列的前项和,且,(1)求数列的通项公式;(2)若满足不等式的正整数恰有个,求正实数的取值范围19(12分)如图,三棱锥中,点,分别为,的中点,且平面平面求证:平面;若,求证:平面平面.20(12分)已知函数(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围21(12分)已知函数(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围22(10分)已知函数当时,求函数的极值;若存在与函数,的图象都相切的直线,求实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.2、A【解析】根据所给函数解析式满足的等量关系及指数幂运算,可得;利用定义可证明函数的单调性,由赋值法即可求得函数在上的最大值.【详解】函数的定义域为,且,则;任取,且,则,故,令,则,即,故函数在上单调递增,故,令,故,故函数在上的最大值为4.故选:A.【点睛】本题考查了指数幂的运算及化简,利用定义证明抽象函数的单调性,赋值法在抽象函数求值中的应用,属于中档题.3、B【解析】由得,即,所以得,利用基本不等式求出最小值,得到,再由递推公式求出.【详解】由得,即,当且仅当时取得最小值,此时.故选:B【点睛】本题主要考查了数列中的最值问题,递推公式的应用,基本不等式求最值,考查了学生的运算求解能力.4、D【解析】根据题意,分别假设一个正确,推理出与假设不矛盾,即可得出结论.【详解】解:由题意知,若只有小王的说法正确,则小王对应“入班即静”,而否定小董说法后得出:小王对应“天道酬勤”,则矛盾;若只有小董的说法正确,则小董对应“天道酬勤”,否定小李的说法后得出:小李对应“细节决定成败”,所以剩下小王对应“入班即静”,但与小王的错误的说法矛盾;若小李的说法正确,则“细节决定成败”不是小李的,则否定小董的说法得出:小王对应“天道酬勤”,所以得出“细节决定成败”是小董的,剩下“入班即静”是小李的,符合题意.所以“入班即静”的书写者是:小李.故选:D.【点睛】本题考查推理证明的实际应用.5、C【解析】由题意,可根据向量运算法则得到(1m),从而由向量分解的唯一性得出关于t的方程,求出t的值.【详解】由题意及图,又,所以,(1m),又t,所以,解得m,t,故选C【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题.6、D【解析】设,可得,构造()22,结合,可得,根据向量减法的模长不等式可得解.【详解】设,则,()22|224,所以可得:,配方可得,所以,又 则0,2故选:D【点睛】本题考查了向量的运算综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.7、B【解析】,,若为钝角,则,由余弦定理得,解得;若为锐角,则,同理得.故选B.8、B【解析】由值域为确定的值,得,利用对称中心列方程求解即可【详解】因为,又依题意知的值域为,所以 得,所以,令,得,则的图象的对称中心为.故选:B【点睛】本题考查三角函数 的图像及性质,考查函数的对称中心,重点考查值域的求解,易错点是对称中心纵坐标错写为09、C【解析】讨论当时,是否恒成立;讨论当恒成立时,是否成立,即可选出正确答案.【详解】解:当时,由开口向上,则恒成立;当恒成立时,若,则 不恒成立,不符合题意,若 时,要使得恒成立,则 ,即 .所以“”是“恒成立”的充要条件.故选:C.【点睛】本题考查了命题的关系,考查了不等式恒成立问题.对于探究两个命题的关系时,一般分成两步,若,则推出 是 的充分条件;若,则推出 是 的必要条件.10、A【解析】根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,所以双曲线方程为.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.11、B【解析】推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个,基本事件总数,6和28恰好在同一组包含的基本事件个数,6和28恰好在同一组的概率故选:B【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题12、A【解析】先算出集合,再与集合B求交集即可.【详解】因为或.所以,又因为.所以.故选:A.【点睛】本题考查集合间的基本运算,涉及到解一元二次不等式、指数不等式,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。13、60【解析】直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.14、4【解析】由于曲线与直线相交,存在相邻两个交点间的距离为,所以函数的周期,可得到的取值范围,再由解出的两类不同的值,然后列方程求出,再结合的取值范围可得的最大值.【详解】,可得,由,则或,即或,由题意得,所以,则或,所以可取到的最大值为4.故答案为:4【点睛】此题考查正弦函数的图像和性质的应用及三角方程的求解,熟练应用三角函数的图像和性质是解题的关键,考查了推理能力和计算能力,属于中档题.15、【解析】构造函数,再根据条件确定为奇函数且在上单调递减,最后利用单调性以及奇偶性化简不等式,解得结果.【详解】依题意,令,则,故函数为奇函数,故函数在上单调递减,则,即,故,则x的取值范围为.故答案为:【点睛】本题考查函数奇偶性、单调性以及利用函数性质解不等式,考查综合分析求解能力,属中档题.16、【解析】根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可【详解】解:由,得,则,即,则函数的最小正周期,故答案为:8【点睛】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()分布列见解析,;();()至少增加2人.【解析】()求出X的所有可能取值为9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可()当P(aXb)取到最大值时,求出a,b的可能值,然后求解P(aXb)的最大值即可()利用前两问的结果,判断至少增加2人【详解】()X的取值为:9,12,15,18,24;,,X的分布列为:X912151824P故X的数学期望;()当P(aXb)取到最大值时,a,b的值可能为:,或,或.经计算,,所以P(aXb)的最大值为.()至少增加2人.【点睛】本题考查离散型随机变量及其分布列,离散型随机变量的期望与方差,属于中等题.18、(1);(2)【解析】(1)设等差数列的公差为,根据题意得出关于和的方程组,解出这两个量的值,然后利用等差数列的通项公式可得出数列的通项公式;(2)求出,可得出,可知当为奇数时不等式不成立,只考虑为偶数的情况,利用数列单调性的定义判断数列中偶数项构成的数列的单调性,由此能求出正实数的取值范围【详解】(1)设等差数列的公差为,则,整理得,解得,因此,;(2),满足不等式的正整数恰有个,得,由于,若为奇数,则不等式不可能成立.只考虑为偶数的情况,令,则,.当时,则;当时,则;当时,则.所以,又,.因此,实数的取值范围是.【点睛】本题考查数列的通项公式的求法,考查正实数的取值范围的求法,考查等差数列的性质等基础知识,考查运算求解能力,是中档题19、证明见解析;证明见解析.【解析】利用线面平行的判定定理求证即可;为中点,为中点,可得,可知,故为直角三角形,利用面面垂直的判定定理求证即可.【详解】解: 证明:为中点,为中点,又平面,平面,平面;证明:为中点,为中点,又,则,故为直角三角形,平面平面,平面平面,平面,平面,又平面,平面平面.【点睛】本题考查线面平行和面面垂直的判定定理的应用,属于基础题.20、(1)增区间为,减区间为;(2).【解析】(1)将代入函数的解析式,利用导数可得出函数的单调区间;(2)求函数的导数,分类讨论的范围,利用导数分析函数的单调性,求出函数的最值可判断是否恒成立,可得实数的取值范围【详解】(1)当时,则,当时,则,此时,函数为减函数;当时,则,此时,函数为增函数.所以,函数的增区间为,减区间为;(2),则,.当时,即当时,由,得,此时,函数为增函数;由,得,此时,函数为减函数.则,不合乎题意;当时,即时,.不妨设,其中,令,则或.(i)当时,当时,此时,函数为增函数;当时,此时,函数为减函数;当时,此时,函数为增函数.此时,而,构造函数,则,所以,函数在区间上单调递增,则,即当时,所以,.,符合题意;当时,函数在上为增函数,符合题意;当时,同理可得函数在上单调递增,在上单调递减,在上单调递增,此时,则,解得.综上所述,实数的取值范围是.【点睛】本题考查导数知识的运用,考查函数的单调性与最值,考查恒成立问题,正确求导和分类讨论是关键,属于难题.21、 (1)x=1 (2)证明见解析 (3) 【解析】(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;(2)转化思想,要证 ,即证 ,即证,构造函数进而求证;(3)不等式 对一切正实数恒成立,设,分类讨论进而求解【详解】解:(1)令,所以,当时,在上单调递增;当时,在单调递减;所以,所以的零点为(2)由题意, ,要证 ,即证,即证,令,则,由(1)知,当且仅当时等号成立,所以,即,所以原不等式成立(3)不等式 对一切正实数恒成立,设,记,当时,即时,恒成立,故单调递增于是当时,又,故,当时,又,故,又当时,因此,当时,当,即时,设的两个不等实根分别为,又,于是,故当时,从而在单调递减;当时,此时,于是,即 舍去,综上,的取值范围是【点睛】(1)考查函数求导,根据导函数确定函数的单调性,零点;(2)考查转化思想,构造函数求极值;(3)考查分类讨论思想,函数的单调性,函数的求导;属于难题.22、(1)当时,函数取得极小值为,无极大值;(2)【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是试题解析:(1)函数的定义域为当时,所以 所以当时,当时,所以函数在区间单调递减,在区间单调递增,所以当时,函数取得极小值为,无极大值; (2)设函数上点与函数上点处切线相同,则 所以 所以,代入得: 设,则不妨设则当时,当时,所以在区间上单调递减,在区间上单调递增, 代入可得:设,则对恒成立,所以在区间上单调递增,又所以当时,即当时, 又当时 因此当时,函数必有零点;即当时,必存在使得成立;即存在使得函数上点与函数上点处切线相同又由得:所以单调递减,因此所以实数的取值范围是

    注意事项

    本文(2022-2023学年内蒙古阿荣旗第一中学高考冲刺数学模拟试题含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开