2022-2023学年山东省临清市中考四模数学试题含解析.doc
-
资源ID:87795172
资源大小:875KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年山东省临清市中考四模数学试题含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示,在方格纸上建立的平面直角坐标系中,将ABC绕点O按顺时针方向旋转90°,得到ABO,则点A的坐标为( )A(3 ,1)B(3 ,2)C(2 ,3)D(1 ,3)2用配方法解下列方程时,配方有错误的是( )A化为B化为C化为D化为3sin60°的倒数为( )A2BCD4下列运算正确的是()Ax4+x4=2x8 B(x2)3=x5 C(xy)2=x2y2 Dx3x=x45如图,在平面直角坐标系中,直线y=k1x+2(k10)与x轴交于点A,与y轴交于点B,与反比例函数y=在第二象限内的图象交于点C,连接OC,若SOBC=1,tanBOC=,则k2的值是()A3BC3D66下列图案中,既是中心对称图形,又是轴对称图形的是()ABCD7如图,ABC中,若DEBC,EFAB,则下列比例式正确的是( )ABCD8一个圆锥的侧面积是12,它的底面半径是3,则它的母线长等于()A2 B3 C4 D69下列说法:平分弦的直径垂直于弦;在n次随机实验中,事件A出现m次,则事件A发生的频率,就是事件A的概率;各角相等的圆外切多边形一定是正多边形;各角相等的圆内接多边形一定是正多边形;若一个事件可能发生的结果共有n种,则每一种结果发生的可能性是其中正确的个数()A1B2C3D410如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD11如图,直线ABCD,AE平分CAB,AE与CD相交于点E,ACD=40°,则DEA=()A40°B110°C70°D140°12下列立体图形中,主视图是三角形的是( )ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13若O所在平面内一点P到O的最大距离为6,最小距离为2,则O的半径为_14如果一个正多边形的中心角为72°,那么这个正多边形的边数是 15如图,在平面直角坐标系中,已知A(2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA,则A的坐标为_16已知ABCDEF,若ABC与DEF的相似比为,则ABC与DEF对应中线的比为_17如图,已知ABC中,ABC50°,P为ABC内一点,过点P的直线MN分別交AB、BC于点M、N若M在PA的中垂线上,N在PC的中垂线上,则APC的度数为_18已知一个正数的平方根是3x2和5x6,则这个数是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)已知:如图,在OAB中,OA=OB,O经过AB的中点C,与OB交于点D,且与BO的延长线交于点E,连接EC,CD(1)试判断AB与O的位置关系,并加以证明;(2)若tanE=,O的半径为3,求OA的长20(6分)省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题m= %,这次共抽取 名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?21(6分)有一个二次函数满足以下条件:函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);对称轴是x3;该函数有最小值是1(1)请根据以上信息求出二次函数表达式;(1)将该函数图象xx1的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),结合画出的函数图象求x3+x4+x5的取值范围22(8分)吴京同学根据学习函数的经验,对一个新函数y的图象和性质进行了如下探究,请帮他把探究过程补充完整该函数的自变量x的取值范围是 列表:x210123456y m1 5n1表中m ,n 描点、连线在下面的格点图中,建立适当的平面直角坐标系xOy中,描出上表中各对对应值为坐标的点(其中x为横坐标,y为纵坐标),并根据描出的点画出该函数的图象:观察所画出的函数图象,写出该函数的两条性质: ; 23(8分) “知识改变命运,科技繁荣祖国”在举办一届全市科技运动会上下图为某校2017年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:(1)该校参加航模比赛的总人数是 人,空模所在扇形的圆心角的度数是 ;(2)并把条形统计图补充完整;(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖今年全市中小学参加航模比赛人数共有2500人,请你估算今年参加航模比赛的获奖人数约是多少人?24(10分)解方程组 25(10分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将EBF沿EF折叠,得到EBF(1)如图1,连接AB若AEB为等边三角形,则BEF等于多少度在运动过程中,线段AB与EF有何位置关系?请证明你的结论(2)如图2,连接CB,求CBF周长的最小值(3)如图3,连接并延长BB,交AC于点P,当BB6时,求PB的长度26(12分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(3,n)两点求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b的解集;过点B作BCx轴,垂足为C,求SABC27(12分)如图,在矩形纸片ABCD中,AB=6,BC=1把BCD沿对角线BD折叠,使点C落在C处,BC交AD于点G;E、F分别是CD和BD上的点,线段EF交AD于点H,把FDE沿EF折叠,使点D落在D处,点D恰好与点A重合(1)求证:ABGCDG;(2)求tanABG的值;(3)求EF的长参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A点坐标为(1,3)故选D2、B【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方【详解】解:、,故选项正确、,故选项错误、,故选项正确、,故选项正确故选:【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数3、D【解析】分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:的倒数是.故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.4、D【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (xy)2=x22xy+y2 ,故错误; D. x3x=x4,正确,故选D.5、C【解析】如图,作CHy轴于H通过解直角三角形求出点C坐标即可解决问题.【详解】解:如图,作CHy轴于H由题意B(0,2), CH=1,tanBOC= OH=3,C(1,3),把点C(1,3)代入,得到k2=3,故选C【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型6、B【解析】根据轴对称图形与中心对称图形的概念解答【详解】A不是轴对称图形,是中心对称图形;B是轴对称图形,是中心对称图形;C不是轴对称图形,也不是中心对称图形;D是轴对称图形,不是中心对称图形故选B【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合7、C【解析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解【详解】解:DEBC,BDBC,选项A不正确;DEBC,EFAB,EF=BD,选项B不正确;EFAB,选项C正确;DEBC,EFAB,=,CEAE,选项D不正确;故选C【点睛】本题考查了平行线分线段成比例定理;熟练掌握平行线分线段成比例定理,在解答时寻找对应线段是关健8、C【解析】设母线长为R,底面半径是3cm,则底面周长=6,侧面积=3R=12,R=4cm故选C9、A【解析】根据垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义逐一判断可得【详解】平分弦(不是直径)的直径垂直于弦,故此结论错误;在n次随机实验中,事件A出现m次,则事件A发生的频率,试验次数足够大时可近似地看做事件A的概率,故此结论错误;各角相等的圆外切多边形是正多边形,此结论正确;各角相等的圆内接多边形不一定是正多边形,如圆内接矩形,各角相等,但不是正多边形,故此结论错误;若一个事件可能发生的结果共有n种,再每种结果发生的可能性相同是,每一种结果发生的可能性是故此结论错误;故选:A【点睛】本题主要考查命题的真假,解题的关键是掌握垂径定理、频率估计概率、圆的内接多边形、外切多边形的性质与正多边形的定义、概率的意义10、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形11、B【解析】先由平行线性质得出ACD与BAC互补,并根据已知ACD=40°计算出BAC的度数,再根据角平分线性质求出BAE的度数,进而得到DEA的度数【详解】ABCD,ACD+BAC=180°,ACD=40°,BAC=180°40°=140°,AE平分CAB,BAE=BAC=×140°=70°,DEA=180°BAE=110°,故选B【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补12、A【解析】考查简单几何体的三视图根据从正面看得到的图形是主视图,可得图形的主视图【详解】A、圆锥的主视图是三角形,符合题意;B、球的主视图是圆,不符合题意;C、圆柱的主视图是矩形,不符合题意;D、正方体的主视图是正方形,不符合题意故选A【点睛】主视图是从前往后看,左视图是从左往右看,俯视图是从上往下看二、填空题:(本大题共6个小题,每小题4分,共24分)13、2或1【解析】点P可能在圆内也可能在圆外,因而分两种情况进行讨论.【详解】解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;当点在圆内时,则这个圆的半径是(6+2)÷2=1故答案为2或1.【点睛】此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.14、5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念15、 (2,3)【解析】作ACx轴于C,作ACx轴,垂足分别为C、C,证明ABCBAC,可得OC=OB+BC=1+1=2,AC=BC=3,可得结果【详解】如图,作ACx轴于C,作ACx轴,垂足分别为C、C,点A、B的坐标分别为(-2,1)、(1,0),AC=2,BC=2+1=3,ABA=90°,ABC+ABC=90°,BAC+ABC=90°,BAC=ABC,BA=BA,ACB=BCA,ABCBAC,OC=OB+BC=1+1=2,AC=BC=3,点A的坐标为(2,3)故答案为(2,3)【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定解决问题的关键是作辅助线构造全等三角形16、3:4【解析】由于相似三角形的相似比等于对应中线的比,ABC与DEF对应中线的比为3:4故答案为3:4.17、115°【解析】根据三角形的内角和得到BAC+ACB=130°,根据线段的垂直平分线的性质得到AM=PM,PN=CN,由等腰三角形的性质得到MAP=APM,CPN=PCN,推出MAP+PCN=PAC+ACP=×130°=65°,于是得到结论【详解】ABC=50°,BAC+ACB=130°,若M在PA的中垂线上,N在PC的中垂线上,AM=PM,PN=CN,MAP=APM,CPN=PCN,APC=180°-APM-CPN=180°-PAC-ACP,MAP+PCN=PAC+ACP=×130°=65°,APC=115°,故答案为:115°【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键18、【解析】试题解析:根据题意,得:解得:故答案为【点睛】:一个正数有2个平方根,它们互为相反数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)AB与O的位置关系是相切,证明见解析;(2)OA=1【解析】(1)先判断AB与O的位置关系,然后根据等腰三角形的性质即可解答本题;(2)根据题三角形的相似可以求得BD的长,从而可以得到OA的长【详解】解:(1)AB与O的位置关系是相切,证明:如图,连接OCOA=OB,C为AB的中点,OCABAB是O的切线;(2)ED是直径,ECD=90°E+ODC=90°又BCD+OCD=90°,OCD=ODC,BCD=E又CBD=EBC,BCDBEC. BC2=BDBE,设BD=x,则BC=2x又BC2=BDBE,(2x)2=x(x+6)解得x1=0,x2=2BD=x0,BD=2OA=OB=BD+OD=2+3=1【点睛】本题考查直线和圆的位置关系、等腰三角形的性质、三角形的相似,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答20、 (1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、114%20%40%=26%; 20÷40%=50;骑自行车人数:5020137=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名)答:该校骑自行车上学的学生有300名考点:统计图21、(1)y=(x3)11;(1)11x3+x4+x59+1【解析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点分类讨论:分别求得平行于x轴的直线与图象“G”有1个交点、1个交点时x3x4x5的取值范围,易得直线与图象“G”要有3个交点时x3x4x5的取值范围【详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,1)设二次函数表达式为:y=a(x3)11该图象过A(1,0)0=a(13)11,解得a=表达式为y=(x3)11(1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有1个交点,由二次函数的轴对称性可求x3+x4=6,x3+x4+x511,当直线过y=(x3)11的图象顶点时,有1个交点,由翻折可以得到翻折后的函数图象为y=(x3)1+1,令(x3)1+1=1时,解得x=3+1或x=31(舍去)x3+x4+x59+1综上所述11x3+x4+x59+1【点睛】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用22、(1)一切实数(2)-,- (3)见解析(4)该函数有最小值没有最大值;该函数图象关于直线x2对称【解析】(1)分式的分母不等于零;(2)把自变量的值代入即可求解;(3)根据题意描点、连线即可;(4)观察图象即可得出该函数的其他性质【详解】(1)由y知,x24x+50,所以变量x的取值范围是一切实数故答案为:一切实数;(2)m,n,故答案为:-,-;(3)建立适当的直角坐标系,描点画出图形,如下图所示:(4)观察所画出的函数图象,有如下性质:该函数有最小值没有最大值;该函数图象关于直线x2对称故答案为:该函数有最小值没有最大值;该函数图象关于直线x2对称【点睛】本题综合考查了二次函数的图象和性质,根据图表画出函数的图象是解题的关键23、(1)24,120°;(2)见解析;(3)1000人【解析】(1)由建模的人数除以占的百分比,求出调查的总人数即可,再算空模人数,即可知道空模所占百分比,从而算出对应的圆心角度数;(2)根据空模人数然后补全条形统计图;(3)根据随机取出人数获奖的人数比,即可得到结果【详解】解:(1)该校参加航模比赛的总人数是6÷25%24(人),则参加空模人数为24(6+4+6)8(人),空模所在扇形的圆心角的度数是360°×120°,故答案为:24,120°;(2)补全条形统计图如下:(3)估算今年参加航模比赛的获奖人数约是2500×1000(人)【点睛】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键24、【解析】将×3,再联立消未知数即可计算.【详解】解:得: +得: 把代入得方程组的解为【点睛】本题考查二元一次方程组解法,关键是掌握消元法.25、(1)BEF60°;A B'EF,证明见解析;(2)CBF周长的最小值5+5;(3)PB【解析】(1)当AEB为等边三角形时,AE B60°,由折叠可得,BEF BE B ×120°60°;依据AEBE,可得EA BE BA,再根据BEFBEF,即可得到BEFBA B,进而得出EFA B;(2)由折叠可得,CF+ BFCF+BFBC10,依据BE+ BCCE,可得BCCEBE55,进而得到BC最小值为55,故CBF周长的最小值10+555+5;(3)将ABB和APB分别沿AB、AC翻折到ABM和APN处,延长MB、NP相交于点Q,由MAN2BAC90°,MN90°,AMAN,可得四边形AMQN为正方形,设PBPNx,则BP6+x,BQ862,QP8x依据BQP90°,可得方程22+(8x)2(6+x)2,即可得出PB的长度【详解】(1)当AE B为等边三角形时,AE B60°,由折叠可得,BEFBE B×120°60°,故答案为60;A BEF,证明:点E是AB的中点,AEBE,由折叠可得BEBE,AEBE,EA BE BA,又BEFBEF,BEFBA B,EFA B;(2)如图,点B的轨迹为半圆,由折叠可得,BFBF,CF+ BFCF+BFBC10,BE+ BCCE,BCCEBE55,BC最小值为55,CBF周长的最小值10+555+5;(3)如图,连接A B,易得A BB90°,将AB B和AP B分别沿AB、AC翻折到ABM和APN处,延长MB、NP相交于点Q,由MAN2BAC90°,MN90°,AMAN,可得四边形AMQN为正方形,由AB10,B B6,可得A B8,QMQNA B8,设P BPNx,则BP6+x,BQ862,QP8xBQP90°,22+(8x)2(6+x)2,解得:x,P Bx【点睛】本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案26、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;(2)3x0或x2;(3)1【解析】(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积【详解】解:(1)点A(2,3)在y=的图象上,m=6,反比例函数的解析式为:y=,n=2,A(2,3),B(3,2)两点在y=kx+b上,解得:,一次函数的解析式为:y=x+1;(2)由图象可知3x0或x2;(3)以BC为底,则BC边上的高为3+2=1,SABC=×2×1=127、(1)证明见解析(2)7/24(3)25/6【解析】(1)证明:BDC由BDC翻折而成, C=BAG=90°,CD=AB=CD,AGB=DGC,ABG=ADE。在ABGCDG中,BAG=C,AB= CD,ABG=AD C,ABGCDG(ASA)。(2)解:由(1)可知ABGCDG,GD=GB,AG+GB=AD。设AG=x,则GB=1x,在RtABG中,AB2+AG2=BG2,即62+x2=(1x)2,解得x=。(3)解:AEF是DEF翻折而成,EF垂直平分AD。HD=AD=4。tanABG=tanADE=。EH=HD×=4×。EF垂直平分AD,ABAD,HF是ABD的中位线。HF=AB=×6=3。EF=EH+HF=。(1)根据翻折变换的性质可知C=BAG=90°,CD=AB=CD,AGB=DGC,故可得出结论。(2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在RtABG中利用勾股定理即可求出AG的长,从而得出tanABG的值。(3)由AEF是DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tanABG的值即可得出EH的长,同理可得HF是ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。