2022-2023学年北京市重点名校中考适应性考试数学试题含解析.doc
-
资源ID:87795184
资源大小:705.50KB
全文页数:15页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年北京市重点名校中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1下列实数0,其中,无理数共有()A1个B2个C3个D4个2若分式有意义,则的取值范围是( )A;B;C;D.3如图,在平面直角坐标系中,正方形的顶点在轴上,且,则正方形的面积是( )ABCD4若关于x的不等式组无解,则m的取值范围()Am3Bm3Cm3Dm35如图,将OAB绕O点逆时针旋转60°得到OCD,若OA4,AOB35°,则下列结论错误的是()ABDO60°BBOC25°COC4DBD46估计-1的值在( )A0到1之间B1到2之间C2到3之间D3至4之间7某商品的进价为每件元当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件现在要使利润为元,每件商品应降价( )元A3B2.5C2D58正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是()Ak1Bk1Ck1Dk19如图,直线mn,直角三角板ABC的顶点A在直线m上,则的余角等于( )A19°B38°C42°D52°10y=(m1)x|m|+3m表示一次函数,则m等于()A1B1C0或1D1或1二、填空题(本大题共6个小题,每小题3分,共18分)11如图所示,数轴上点A所表示的数为a,则a的值是_12如果方程x2-4x+3=0的两个根分别是RtABC的两条边,ABC最小的角为A,那么tanA的值为132的平方根是_.14如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,ABC=90°,点B在点A的右侧,点C在第一象限。将ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为_15方程的解是_16如图,数轴上点A所表示的实数是_三、解答题(共8题,共72分)17(8分)如图,AB为O的直径,直线BMAB于点B,点C在O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为O的切线交BM于点F(1)求证:CFDF;(2)连接OF,若AB10,BC6,求线段OF的长18(8分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高(=1.73,结果保留一位小数)19(8分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F(1)如图,当=60°时,连接DD',求DD'和A'F的长;(2)如图,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值20(8分)小明和小刚玩“石头、剪刀、布”的游戏,每一局游戏双方各自随机做出“石头”、“剪刀”、“布”三种手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,相同的手势是和局(1)用树形图或列表法计算在一局游戏中两人获胜的概率各是多少?(2)如果两人约定:只要谁率先胜两局,就成了游戏的赢家用树形图或列表法求只进行两局游戏便能确定赢家的概率21(8分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为_米22(10分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分求证:;若的直径长8,求BE的长23(12分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角DAN和DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CMAN)求灯杆CD的高度;求AB的长度(结果精确到0.1米)(参考数据:=1.1sin37°060,cos37°0.80,tan37°0.75)24解分式方程:=1参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据无理数的概念可判断出无理数的个数【详解】解:无理数有:,.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数2、B【解析】分式的分母不为零,即x-21【详解】分式有意义,x-21,.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零3、D【解析】作BEOA于点E.则AE=2-(-3)=5,AODBEA(AAS),OD=AE=5, ,正方形的面积是: ,故选D.4、C【解析】根据“大大小小找不着”可得不等式2+m2m-1,即可得出m的取值范围【详解】 ,由得:x2+m,由得:x2m1,不等式组无解,2+m2m1,m3,故选C【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键5、D【解析】由OAB绕O点逆时针旋转60°得到OCD知AOC=BOD=60°,AO=CO=4、BO=DO,据此可判断C;由AOC、BOD是等边三角形可判断A选项;由AOB=35°,AOC=60°可判断B选项,据此可得答案【详解】解:OAB绕O点逆时针旋转60°得到OCD,AOC=BOD=60°,AO=CO=4、BO=DO,故C选项正确;则AOC、BOD是等边三角形,BDO=60°,故A选项正确;AOB=35°,AOC=60°,BOC=AOC-AOB=60°-35°=25°,故B选项正确.故选D【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等及等边三角形的判定和性质6、B【解析】试题分析:23,1-12,即-1在1到2之间,故选B考点:估算无理数的大小7、A【解析】设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出300+20(60-x)件,然后根据盈利为6120元即可列出方程解决问题【详解】解:设售价为x元时,每星期盈利为6120元,由题意得(x-40)300+20(60-x)=6120,解得:x1=57,x2=1,由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1每件商品应降价60-57=3元故选:A【点睛】本题考查了一元二次方程的应用此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键此题要注意判断所求的解是否符合题意,舍去不合题意的解8、D【解析】根据正比例函数图象与系数的关系列出关于k的不等式k+10,然后解不等式即可【详解】解:正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,k+10,解得,k-1;故选D【点睛】本题主要考查正比例函数图象在坐标平面内的位置与k的关系解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系k0时,直线必经过一、三象限,y随x的增大而增大;k0时,直线必经过二、四象限,y随x的增大而减小9、D【解析】试题分析:过C作CD直线m,mn,CDmn,DCA=FAC=52°,=DCB,ACB=90°,=90°52°=38°,则a的余角是52°故选D考点:平行线的性质;余角和补角10、B【解析】由一次函数的定义知,|m|=1且m-10,所以m=-1,故选B.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标【详解】直角三角形的两直角边为1,2,斜边长为,那么a的值是:故答案为.【点睛】此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离12、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,当3是直角边时,ABC最小的角为A,tanA=;当3是斜边时,根据勾股定理,A的邻边=,tanA=;所以tanA的值为或13、【解析】直接根据平方根的定义求解即可(需注意一个正数有两个平方根)【详解】解:2的平方根是故答案为【点睛】本题考查了平方根的定义注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根14、【解析】依据旋转的性质,即可得到,再根据,即可得出,最后在中,可得到【详解】依题可知,在中,在中,故答案为:【点睛】本题考查了坐标与图形变化,等腰直角三角形的性质以及含30°角的直角三角形的综合运用,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标15、1【解析】,x=1,代入最简公分母,x=1是方程的解.16、【解析】A点到-1的距离等于直角三角形斜边的长度,应用勾股定理求解出直角三角形斜边长度即可.【详解】解:直角三角形斜边长度为,则A点到-1的距离等于,则A点所表示的数为:1+【点睛】本题考查了利用勾股定理求解数轴上点所表示的数.三、解答题(共8题,共72分)17、(1)详见解析;(2)OF【解析】(1)连接OC,如图,根据切线的性质得1+3=90°,则可证明3=4,再根据圆周角定理得到ACB=90°,然后根据等角的余角相等得到BDC=5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明ABCABD,利用相似比得到AD=,然后证明OF为ABD的中位线,从而根据三角形中位线性质求出OF的长【详解】(1)证明:连接OC,如图,CF为切线,OCCF,1+390°,BMAB,2+490°,OCOB,12,34,AB为直径,ACB90°,3+590°,4+BDC90°,BDC5,CFDF;(2)在RtABC中,AC8,BACDAB,ABCABD,即,AD,34,FCFB,而FCFD,FDFB,而BOAO,OF为ABD的中位线,OFAD【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和垂径定理18、塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形本题涉及两个直角三角形,即RtBED和RtDAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC试题解析:作BECD于E可得RtBED和矩形ACEB则有CE=AB=16,AC=BE在RtBED中,DBE=45°,DE=BE=AC在RtDAC中,DAC=60°,DC=ACtan60°=AC16+DE=DC,16+AC=AC,解得:AC=8+8=DE所以塔CD的高度为(8+24)米37.9米,答:塔CD的高度为37.9米19、(1)DD=1,AF= 4;(2);(1)【解析】(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形A'B'C'D',只要证明CDD是等边三角形即可解决问题;如图中,连接CF,在RtCDF中,求出FD即可解决问题;(2)由ADFADC,可推出DF的长,同理可得CDECBA,可求出DE的长,即可解决问题;(1)如图中,作FGCB于G,由SACF=ACCF=AFCD,把问题转化为求AFCD,只要证明ACF=90°,证明CADFAC,即可解决问题;【详解】解:(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形A'B'C'D',AD=AD=BC=BC=4,CD=CD=AB=AB=1ADC=ADC=90°=60°,DCD=60°,CDD是等边三角形,DD=CD=1如图中,连接CFCD=CD,CF=CF,CDF=CDF=90°,CDFCDF,DCF=DCF=DCD=10°在RtCDF中,tanDCF=,DF=,AF=ADDF=4(2)如图中,在RtACD中,D=90°,AC2=AD2+CD2,AC=5,AD=2DAF=CAD,ADF=D=90°,ADFADC,DF=同理可得CDECBA,ED=,EF=ED+DF=(1)如图中,作FGCB于G四边形ABCD是矩形,GF=CD=CD=1SCEF=EFDC=CEFG,CE=EF,AE=EF,AE=EF=CE,ACF=90°ADC=ACF,CAD=FAC,CADFAC,AC2=ADAF,AF=SACF=ACCF=AFCD,ACCF=AFCD=20、(1),(2)【解析】解:(1)画树状图得:总共有9种等可能情况,每人获胜的情形都是3种,两人获胜的概率都是(2)由(1)可知,一局游戏每人胜、负、和的机会均等,都为任选其中一人的情形可画树状图得:总共有9种等可能情况,当出现(胜,胜)或(负,负)这两种情形时,赢家产生,两局游戏能确定赢家的概率为:(1)根据题意画出树状图或列表,由图表求得所有等可能的结果与在一局游戏中两人获胜的情况,利用概率公式即可求得答案(2)因为由(1)可知,一局游戏每人胜、负、和的机会均等,都为可画树状图,由树状图求得所有等可能的结果与进行两局游戏便能确定赢家的情况,然后利用概率公式求解即可求得答案21、10【解析】试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用22、(1)证明见解析;(2)【解析】先利用等腰三角形的性质得到,利用切线的性质得,则CEBD,然后证明得到BE=CE;作于F,如图,在RtOBC中利用正弦定义得到BC=5,所以,然后在RtBEF中通过解直角三角形可求出BE的长【详解】证明:,是的切线,平分,;解:作于F,如图, 的直径长8,在中,设,则,即,解得,故答案为(1)证明见解析;(2) 【点睛】本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形23、(1)10米;(2)11.4米【解析】(1)延长DC交AN于H只要证明BC=CD即可;(2)在RtBCH中,求出BH、CH,在 RtADH中求出AH即可解决问题.【详解】(1)如图,延长DC交AN于H,DBH=60°,DHB=90°,BDH=30°,CBH=30°,CBD=BDC=30°,BC=CD=10(米);(2)在RtBCH中,CH=BC=5,BH=58.65,DH=15,在RtADH中,AH=20,AB=AHBH=208.65=11.4(米)【点睛】本题考查解直角三角形的应用坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.24、x=1【解析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】化为整式方程得:23x=x2,解得:x=1,经检验x=1是原方程的解,所以原方程的解是x=1【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根