2022-2023学年四川省南充市南充高级中学高三第三次模拟考试数学试卷含解析.doc
2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则a,b,c的大小关系为( )ABCD2已知正四面体的棱长为,是该正四面体外接球球心,且,则( )ABCD3已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为( )ABCD4已知函数,若,则的取值范围是( )ABCD5设点,P为曲线上动点,若点A,P间距离的最小值为,则实数t的值为( )ABCD6集合,则( )ABCD7已知函数,为的零点,为图象的对称轴,且在区间上单调,则的最大值是( )ABCD8根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为()ABCD9设,分别为双曲线(a0,b0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )ABCD10已知函数,则函数的零点所在区间为( )ABCD11已知函数,以下结论正确的个数为( )当时,函数的图象的对称中心为;当时,函数在上为单调递减函数;若函数在上不单调,则;当时,在上的最大值为1A1B2C3D412一个正三角形的三个顶点都在双曲线的右支上,且其中一个顶点在双曲线的右顶点,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13函数在区间内有且仅有两个零点,则实数的取值范围是_.14如图所示,边长为1的正三角形中,点,分别在线段,上,将沿线段进行翻折,得到右图所示的图形,翻折后的点在线段上,则线段的最小值为_15函数f(x)x2xlnx的图象在x1处的切线方程为_.16已知等比数列的各项都是正数,且成等差数列,则=_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)设点,直线与曲线交于,两点,求的值.18(12分)如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.19(12分)11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.(1)经过1轮投球,记甲的得分为,求的分布列;(2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.求;规定,经过计算机计算可估计得,请根据中的值分别写出a,c关于b的表达式,并由此求出数列的通项公式.20(12分)已知函数和的图象关于原点对称,且(1)解关于的不等式;(2)如果对,不等式恒成立,求实数的取值范围21(12分)设为实数,已知函数,(1)当时,求函数的单调区间:(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;(3)若函数(,)有两个相异的零点,求的取值范围22(10分)已知三点在抛物线上.()当点的坐标为时,若直线过点,求此时直线与直线的斜率之积;()当,且时,求面积的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】与中间值1比较,可用换底公式化为同底数对数,再比较大小【详解】,又,即,故选:D.【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较2、A【解析】如图设平面,球心在上,根据正四面体的性质可得,根据平面向量的加法的几何意义,重心的性质,结合已知求出的值.【详解】如图设平面,球心在上,由正四面体的性质可得:三角形是正三角形,在直角三角形中,因为为重心,因此,则,因此,因此,则,故选A.【点睛】本题考查了正四面体的性质,考查了平面向量加法的几何意义,考查了重心的性质,属于中档题.3、D【解析】讨论,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,故,函数在上单调递增,在上单调递减,且;当时,;当时,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.4、B【解析】对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.5、C【解析】设,求,作为的函数,其最小值是6,利用导数知识求的最小值【详解】设,则,记,易知是增函数,且的值域是,的唯一解,且时,时,即,由题意,而,解得,故选:C【点睛】本题考查导数的应用,考查用导数求最值解题时对和的关系的处理是解题关键6、A【解析】计算,再计算交集得到答案.【详解】,故.故选:.【点睛】本题考查了交集运算,属于简单题.7、B【解析】由题意可得,且,故有,再根据,求得,由可得的最大值,检验的这个值满足条件【详解】解:函数,为的零点,为图象的对称轴,且,、,即为奇数在,单调,由可得的最大值为1当时,由为图象的对称轴,可得,故有,满足为的零点,同时也满足满足在上单调,故为的最大值,故选:B【点睛】本题主要考查正弦函数的图象的特征,正弦函数的周期性以及它的图象的对称性,属于中档题8、A【解析】每个县区至少派一位专家,基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,由此能求出甲,乙两位专家派遣至同一县区的概率.【详解】派四位专家对三个县区进行调研,每个县区至少派一位专家基本事件总数:甲,乙两位专家派遣至同一县区包含的基本事件个数:甲,乙两位专家派遣至同一县区的概率为:本题正确选项:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.9、C【解析】设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆 的切线的切点为,所以是中点,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题.10、A【解析】首先求得时,的取值范围.然后求得时,的单调性和零点,令,根据“时,的取值范围”得到,利用零点存在性定理,求得函数的零点所在区间.【详解】当时,.当时,为增函数,且,则是唯一零点.由于“当时,.”,所以令,得,因为,所以函数的零点所在区间为.故选:A【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.11、C【解析】逐一分析选项,根据函数的对称中心判断;利用导数判断函数的单调性;先求函数的导数,若满足条件,则极值点必在区间;利用导数求函数在给定区间的最值.【详解】为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确由题意知因为当时,又,所以在上恒成立,所以函数在上为单调递减函数,正确由题意知,当时,此时在上为增函数,不合题意,故令,解得因为在上不单调,所以在上有解,需,解得,正确令,得根据函数的单调性,在上的最大值只可能为或因为,所以最大值为64,结论错误故选:C【点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.12、D【解析】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线可解得【详解】因为双曲线分左右支,所以,根据双曲线和正三角形的对称性可知:第一象限的顶点坐标为,将其代入双曲线方程得:,即,由得故选:【点睛】本题考查了双曲线的性质,意在考查学生对这些知识的理解掌握水平二、填空题:本题共4小题,每小题5分,共20分。13、【解析】对函数零点问题等价转化,分离参数讨论交点个数,数形结合求解.【详解】由题:函数在区间内有且仅有两个零点,等价于函数恰有两个公共点,作出大致图象:要有两个交点,即,所以.故答案为:【点睛】此题考查函数零点问题,根据函数零点个数求参数的取值范围,关键在于对函数零点问题恰当变形,等价转化,数形结合求解.14、【解析】设,在中利用正弦定理得出关于的函数,从而可得的最小值【详解】解:设,则,在中,由正弦定理可得,即,当即时,取得最小值故答案为【点睛】本题考查正弦定理解三角形的应用,属中档题15、xy0.【解析】先将x1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利用点斜式写出切线方程.【详解】由题意得.故切线方程为y1x1,即xy0.故答案为:xy0.【点睛】本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题.16、【解析】根据等差中项性质,结合等比数列通项公式即可求得公比;代入表达式,结合对数式的化简即可求解.【详解】等比数列的各项都是正数,且成等差数列,则,由等比数列通项公式可知,所以,解得或(舍),所以由对数式运算性质可得,故答案为:.【点睛】本题考查了等差数列通项公式的简单应用,等比数列通项公式的用法,对数式的化简运算,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)利用参数方程、普通方程、极坐标方程间的互化公式即可;(2)将直线参数方程代入圆的普通方程,可得,而根据直线参数方程的几何意义,知,代入即可解决.【详解】(1)直线的参数方程为(为参数),消去;得曲线的极坐标方程为.由,可得,即曲线的直角坐标方程为;(2)将直线的参数方程(为参数)代入的方程,可得,设,是点对应的参数值,则.【点睛】本题考查参数方程、普通方程、极坐标方程间的互化,直线参数方程的几何意义,是一道容易题.18、(1)(2)【解析】(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积【详解】(1)由,得,所以.由正弦定理得,即,得.(2)由正弦定理,在中,在中,又,由得,由余弦定理得,即,解得,所以的面积.【点睛】本题主要考查正余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题19、(1)分布列见解析;(2);,.【解析】(1)经过1轮投球,甲的得分的取值为,记一轮投球,甲投中为事件,乙投中为事件,相互独立,计算概率后可得分布列;(2)由(1)得,由两轮的得分可计算出,计算时可先计算出经过2轮后甲的得分的分布列(的取值为),然后结合的分布列和的分布可计算,由,代入,得两个方程,解得,从而得到数列的递推式,变形后得是等比数列,由等比数列通项公式得,然后用累加法可求得【详解】(1)记一轮投球,甲命中为事件,乙命中为事件,相互独立,由题意,甲的得分的取值为,的分布列为:101(2)由(1),同理,经过2轮投球,甲的得分取值:记,则,由此得甲的得分的分布列为:21012,代入得:,数列是等比数列,公比为,首项为,【点睛】本题考查随机变量的概率分布列,考查相互独立事件同时发生的概率,考查由数列的递推式求通项公式,考查学生的转化与化归思想,本题难点在于求概率分布列,特别是经过2轮投球后甲的得分的概率分布列,这里可用列举法写出各种可能,然后由独立事件的概率公式计算出概率20、(1)(2)【解析】试题分析:(1)由函数和的图象关于原点对称可得的表达式,再去掉绝对值即可解不等式;(2)对,不等式成立等价于,去绝对值得不等式组,即可求得实数的取值范围.试题解析:(1)函数和的图象关于原点对称, 原不等式可化为,即或,解得不等式的解集为;(2)不等式可化为:,即,即,则只需, 解得,的取值范围是.21、(1)函数单调减区间为;单调增区间为(2)(3)【解析】(1)据导数和函数单调性的关系即可求出;(2)分离参数,可得对任意的及任意的恒成立,构造函数,利用导数求出函数的最值即可求出的范围;(3)先求导,再分类讨论,根据导数和函数单调性以及最值得关系即可求出的范围【详解】解:(1)当时,因为,当时,;当时,所以函数单调减区间为;单调增区间为(2)由,得,由于,所以对任意的及任意的恒成立,由于,所以,所以对任意的恒成立,设,则,所以函数在上单调递减,在上单调递增,所以,所以(3)由,得,其中若时,则,所以函数在上单调递增,所以函数至多有一个零点,不合题意;若时,令,得由第(2)小题,知:当时,所以,所以,所以当时,函数的值域为所以,存在,使得,即, 且当时,所以函数在上单调递增,在上单调递减因为函数有两个零点,所以设,则,所以函数在单调递增,由于,所以当时,所以,式中的,又由式,得由第(1)小题可知,当时,函数在上单调递减,所以,即当时,()由于,所以得,又因为,且函数在上单调递减,函数的图象在上不间断,所以函数在上恰有一个零点;()由于,令,设,由于时,所以设,即由式,得,当时,且,同理可得函数在上也恰有一个零点综上,【点睛】本题考查含参数的导数的单调性,利用导数求不等式恒成立问题,以及考查函数零点问题,考查学生的计算能力,是综合性较强的题.22、();()16.【解析】()设出直线的方程并代入抛物线方程,利用韦达定理以及斜率公式,变形可得;()利用,的斜率,求得的坐标,再用基本不等式求得的最小值,从而可得三角形的面积的最小值【详解】解:()设直线的方程为. 联立方程组,得,故,. 所以;()不妨设的三个顶点中的两个顶点在轴右侧(包括轴),设,的斜率为,又,则, 因为,所以由 得,(且)从而当且仅当时取“”号,从而,所以面积的最小值为.【点睛】本题考查了直线与抛物线的综合,属于中档题