欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022-2023学年内蒙古巴彦淖尔市乌拉特前旗中考一模数学试题含解析.doc

    • 资源ID:87795347       资源大小:862.50KB        全文页数:18页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022-2023学年内蒙古巴彦淖尔市乌拉特前旗中考一模数学试题含解析.doc

    2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( )ABCD2若3x3y,则下列不等式中一定成立的是 ( )ABCD3若(x1)01成立,则x的取值范围是()Ax1Bx1Cx0Dx14某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为( )A10=B+10=C10=D+10=5已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周设点运动的时间为,线段的长为表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )ABCD6|的倒数是( )A2BCD27下列说法中正确的是( )A检测一批灯泡的使用寿命适宜用普查.B抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就一定有5次正面朝上.C“367人中有两人是同月同日生”为必然事件.D“多边形内角和与外角和相等”是不可能事件.8下列计算正确的是( )A B C D9某公园里鲜花的摆放如图所示,第个图形中有3盆鲜花,第个图形中有6盆鲜花,第个图形中有11盆鲜花,按此规律,则第个图形中的鲜花盆数为()A37B38C50D5110如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11将三角形纸片()按如图所示的方式折叠,使点落在边上,记为点,折痕为,已知,若以点,为顶点的三角形与相似,则的长度是_.12如图,在菱形ABCD中,AB=,B=120°,点E是AD边上的一个动点(不与A,D重合),EFAB交BC于点F,点G在CD上,DG=DE若EFG是等腰三角形,则DE的长为_13如图,边长为6cm的正三角形内接于O,则阴影部分的面积为(结果保留)_14已知二次函数y=ax2+bx(a0)的最小值是3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_15已知一个多边形的每一个内角都是,则这个多边形是_边形.16写出一个一次函数,使它的图象经过第一、三、四象限:_三、解答题(共8题,共72分)17(8分)化简求值:,其中18(8分)(1)计算:|3|2sin30°+()2(2)化简:.19(8分)如图,抛物线y=ax2+bx+c与x轴的交点分别为A(6,0)和点B(4,0),与y轴的交点为C(0,3)(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上是否同时存在点D和点P,使得APQ和CDO全等,若存在,求点D的坐标,若不存在,请说明理由;若DCB=CDB,CD是MN的垂直平分线,求点M的坐标20(8分) 阅读我们定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“中边三角形”,把这条边和其边上的中线称为“对应边”理解如图1,RtABC是“中边三角形”,C=90°,AC和BD是“对应边”,求tanA的值;探究如图2,已知菱形ABCD的边长为a,ABC=2,点P,Q从点A同时出发,以相同速度分别沿折线ABBC和ADDC向终点C运动,记点P经过的路程为s当=45°时,若APQ是“中边三角形”,试求的值21(8分)如图,MON的边OM上有两点A、B在MON的内部求作一点P,使得点P到MON的两边的距离相等,且PAB的周长最小(保留作图痕迹,不写作法)22(10分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图若AD2,试求出线段CP的最大值23(12分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:(1)若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;(2)若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率24如图所示,正方形网格中,ABC为格点三角形(即三角形的顶点都在格点上)把ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的A1B1C1;把A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的A1B2C2;如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据轴对称图形与中心对称图形的概念求解【详解】A不是轴对称图形,也不是中心对称图形故错误;B不是轴对称图形,也不是中心对称图形故错误;C是轴对称图形,也是中心对称图形故正确;D不是轴对称图形,是中心对称图形故错误故选C【点睛】掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合2、A【解析】两边都除以3,得xy,两边都加y,得:x+y0,故选A3、D【解析】试题解析:由题意可知:x-10,x1故选D.4、B【解析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可【详解】解:设第一批购进x件衬衫,则所列方程为:+10=故选B【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键5、A【解析】解:分析题中所给函数图像,段,随的增大而增大,长度与点的运动时间成正比段,逐渐减小,到达最小值时又逐渐增大,排除、选项,段,逐渐减小直至为,排除选项故选【点睛】本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图6、D【解析】根据绝对值的性质,可化简绝对值,根据倒数的意义,可得答案【详解】|=,的倒数是2;|的倒数是2,故选D【点睛】本题考查了实数的性质,分子分母交换位置是求一个数倒数的关键7、C【解析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.【详解】A. 检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B. 抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C. “367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D. “多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【点睛】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解. 解题关键:理解相关概念,合理运用举反例法.8、D【解析】分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可解答:解:A、x+x=2x,选项错误;B、x?x=x2,选项错误;C、(x2)3=x6,选项错误;D、正确故选D9、D【解析】试题解析:第个图形中有 盆鲜花,第个图形中有盆鲜花,第个图形中有盆鲜花,第n个图形中的鲜花盆数为则第个图形中的鲜花盆数为故选C.10、A【解析】试题分析:观察图形可知,该几何体的主视图是故选A考点:简单组合体的三视图二、填空题(本大题共6个小题,每小题3分,共18分)11、或2【解析】由折叠性质可知BF=BF,BFC与ABC相似,有两种情况,分别对两种情况进行讨论,设出BF=BF=x,列出比例式方程解方程即可得到结果.【详解】由折叠性质可知BF=BF,设BF=BF=x,故CF=4-x当BFCABC,有,得到方程,解得x=,故BF=;当FBCABC,有,得到方程,解得x=2,故BF=2;综上BF的长度可以为或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.12、1或 【解析】由四边形ABCD是菱形,得到BCAD,由于EFAB,得到四边形ABFE是平行四边形,根据平行四边形的性质得到EFAB,于是得到EF=AB=,当EFG为等腰三角形时,EF=GE=时,于是得到DE=DG=AD÷=1,GE=GF时,根据勾股定理得到DE=【详解】解:四边形ABCD是菱形,B=120°,D=B=120°,A=180°-120°=60°,BCAD,EFAB,四边形ABFE是平行四边形,EFAB,EF=AB=,DEF=A=60°,EFC=B=120°,DE=DG,DEG=DGE=30°,FEG=30°,当EFG为等腰三角形时,当EF=EG时,EG=,如图1,过点D作DHEG于H,EH=EG=,在RtDEH中,DE=1,GE=GF时,如图2,过点G作GQEF,EQ=EF=,在RtEQG中,QEG=30°,EG=1,过点D作DPEG于P,PE=EG=,同的方法得,DE=,当EF=FG时,由EFG=180°-2×30°=120°=CFE,此时,点C和点G重合,点F和点B重合,不符合题意,故答案为1或【点睛】本题考查了菱形的性质,平行四边形的性质,等腰三角形的性质以及勾股定理,熟练掌握各性质是解题的关键13、(43)cm1【解析】连接OB、OC,作OHBC于H,根据圆周角定理可知BOC的度数,根据等边三角形的性质可求出OB、OH的长度,利用阴影面积=S扇形OBC-SOBC即可得答案【详解】:连接OB、OC,作OHBC于H,则BH=HC= BC= 3,ABC为等边三角形,A=60°,由圆周角定理得,BOC=1A=110°,OB=OC,OBC=30°,OB=1 ,OH=,阴影部分的面积= ×6×=43 ,故答案为:(43)cm1【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.14、3【解析】由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a0)和y=-c有交点,由此即可解答.【详解】一元二次方程ax2+bx+c=0有实数根,抛物线y=ax2+bx(a0)和直线y=-c有交点,-c-3,即c3,c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a0)和直线y=-c有交点是解决问题的关键.15、十【解析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可【详解】解:180°144°=36°,360°÷36°=1,这个多边形的边数是1故答案为十【点睛】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键16、y=x1(答案不唯一)【解析】一次函数图象经过第一、三、四象限,则可知y=kx+b中k>0,b<0,由此可得如:y=x1(答案不唯一).三、解答题(共8题,共72分)17、 【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.详解:原式 当时,点睛:考查分式的混合运算,掌握运算顺序是解题的关键.18、 (1)2;(2) xy【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=342×+4=2;(2)原式=xy点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19、(1)y=x2x+3;(2)点D坐标为(,0);点M(,0).【解析】(1)应用待定系数法问题可解;(2)通过分类讨论研究APQ和CDO全等由已知求点D坐标,证明DNBC,从而得到DN为中线,问题可解【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得,解得: ,抛物线解析式为:y=-x2-x+3;(2)存在点D,使得APQ和CDO全等,当D在线段OA上,QAP=DCO,AP=OC=3时,APQ和CDO全等,tanQAP=tanDCO,OD=,点D坐标为(-,0).由对称性,当点D坐标为(,0)时,由点B坐标为(4,0),此时点D(,0)在线段OB上满足条件OC=3,OB=4,BC=5,DCB=CDB,BD=BC=5,OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,NDC=MDC,NDC=DCB,DNBC,则点N为AC中点DN时ABC的中位线,DN=DM=BC=,OM=DM-OD=点M(,0)【点睛】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识解答时,注意数形结合20、tanA=;综上所述,当=45°时,若APQ是“中边三角形”,的值为或【解析】(1)由AC和BD是“对应边”,可得AC=BD,设AC=2x,则CD=x,BD=2x,可得BC=x,可得tanA=(2) 当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,可得AC是QP的垂直平分线.可求得AEFCEP,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,=,=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,(3)作QNAP于N,可得tanAPQ=,tanAPE=,=,【详解】解:理解AC和BD是“对应边”,AC=BD,设AC=2x,则CD=x,BD=2x,C=90°,BC=x,tanA=;探究若=45°,当点P在AB上时,APQ是等腰直角三角形,不可能是“中边三角形”,如图2,当点P在BC上时,连接AC,交PQ于点E,延长AB交QP的延长线于点F,PC=QC,ACB=ACD,AC是QP的垂直平分线,AP=AQ,CAB=ACP,AEF=CEP,AEFCEP,=,PE=CE,=,分两种情况:当底边PQ与它的中线AE相等,即AE=PQ时,=,=;当腰AP与它的中线QM相等时,即AP=QM时,QM=AQ,如图3,作QNAP于N,MN=AN=PM=QM,QN=MN,ntanAPQ=,taAPE=,=,综上所述,当=45°时,若APQ是“中边三角形”,的值为或【点睛】本题是一道相 似形综合运用的试题, 考查了相 似三角形的判定及性质的运用, 勾股定理的运用, 等腰直角三角形的性质的运用, 等腰三角形的性质的运用, 锐角三角形函数值的运用, 解答时灵活运用三角函数值建立方程求解是解答的关键.21、详见解析【解析】作MON的角平分线OT,在ON上截取OA,使得OAOA,连接BA交OT于点P,点P即为所求【详解】解:如图,点P即为所求【点睛】本题主要考查作图-复杂作图,利用了角平分线的性质,难点在于利用轴对称求最短路线的问题22、(1)AE=DF,AEDF,理由见解析;(2)成立,CE:CD=或2;(3) 【解析】试题分析:(1)根据正方形的性质,由SAS先证得ADEDCF由全等三角形的性质得AE=DF,DAE=CDF,再由等角的余角相等可得AEDF;(2)有两种情况:当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知ADC=90°,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可试题解析:(1)AE=DF,AEDF, 理由是:四边形ABCD是正方形,AD=DC,ADE=DCF=90°,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,DE=CF,在ADE和DCF中,AE=DF,DAE=FDC, ADE=90°,ADP+CDF=90°,ADP+DAE=90°,APD=180°-90°=90°,AEDF; (2)(1)中的结论还成立, 有两种情况:如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,则; 如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:,四边形ABCD是正方形,ADC=90°,即ADCE,DE=CD=a,CE:CD=2a:a=2; 即CE:CD=或2; (3)点P在运动中保持APD=90°,点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,在RtQDC中, 即线段CP的最大值是. 点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.23、(1);(2).【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解【详解】(1)正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,抽到的卡片既是中心对称图形又是轴对称图形的概率是;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比24、(1)(2)作图见解析;(3)【解析】(1)利用平移的性质画图,即对应点都移动相同的距离(2)利用旋转的性质画图,对应点都旋转相同的角度(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,A1B1C1即为所求(2)如答图,分别将A1B1,A1C1绕点A1按逆时针方向旋转90°,得到B2,C2,连接B2C2,A1B2C2即为所求(3),点B所走的路径总长=考点:1网格问题;2作图(平移和旋转变换);3勾股定理;4弧长的计算

    注意事项

    本文(2022-2023学年内蒙古巴彦淖尔市乌拉特前旗中考一模数学试题含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开