2022-2023学年安徽省太和县第二中学高考数学五模试卷含解析.doc
2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则( )ABCD2若实数满足不等式组则的最小值等于( )ABCD3已知双曲线的一条渐近线的倾斜角为,且,则该双曲线的离心率为( )ABC2D44ABCD5集合,则( )ABCD6已知,则下列关系正确的是( )ABCD7已知命题p:直线ab,且b平面,则a;命题q:直线l平面,任意直线m,则lm.下列命题为真命题的是( )ApqBp(非q)C(非p)qDp(非q)8在棱长为a的正方体中,E、F、M分别是AB、AD、的中点,又P、Q分别在线段、上,且,设平面平面,则下列结论中不成立的是( )A平面BC当时,平面D当m变化时,直线l的位置不变9框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,则图中空白框中应填入( )A,BC,D,10设命题p:>1,n2>2n,则p为( )ABCD11已知函数,若,且 ,则的取值范围为( )ABCD12已知复数,则对应的点在复平面内位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是_14已知函数为偶函数,则_.15在三棱锥P-ABC中,三个侧面与底面所成的角均为,三棱锥的内切球的表面积为_.16已知,其中,为正的常数,且,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若函数,试讨论的单调性;(2)若,求的取值范围.18(12分)在直角坐标系中,圆的参数方程为:(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆的极坐标方程;(2)若直线:(为参数)被圆截得的弦长为,求直线的倾斜角.19(12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,线段的中点为()证明:直线的斜率与的斜率的乘积为定值;()若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由20(12分)在中,内角的对边分别是,满足条件(1)求角;(2)若边上的高为,求的长21(12分)高铁和航空的飞速发展不仅方便了人们的出行,更带动了我国经济的巨大发展.据统 计,在2018年这一年内从 市到市乘坐高铁或飞机出行的成年人约为万人次.为了 解乘客出行的满意度,现从中随机抽取人次作为样本,得到下表(单位:人次):满意度老年人中年人青年人乘坐高铁乘坐飞机乘坐高铁乘坐飞机乘坐高铁乘坐飞机10分(满意)1212022015分(一般)2362490分(不满意)106344(1)在样本中任取个,求这个出行人恰好不是青年人的概率;(2)在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,记其中老年人出行的人次为.以频率作为概率,求的分布列和数学期望;(3)如果甲将要从市出发到市,那么根据表格中的数据,你建议甲是乘坐高铁还是飞机? 并说明理由.22(10分)如图,已知四边形的直角梯形,BC,为线段的中点,平面,为线段上一点(不与端点重合)(1)若,()求证:PC平面;()求平面与平面所成的锐二面角的余弦值;(2)否存在实数满足,使得直线与平面所成的角的正弦值为,若存在,确定的值,若不存在,请说明理由参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先由得或,再计算即可.【详解】由得或,,又,.故选:B【点睛】本题主要考查了集合的交集,补集的运算,考查学生的运算求解能力.2、A【解析】首先画出可行域,利用目标函数的几何意义求的最小值【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以故选:A【点睛】本题考查了简单线性规划问题,求目标函数的最值先画出可行域,利用几何意义求值,属于中档题3、A【解析】由倾斜角的余弦值,求出正切值,即的关系,求出双曲线的离心率.【详解】解:设双曲线的半个焦距为,由题意又,则,所以离心率,故选:A.【点睛】本题考查双曲线的简单几何性质,属于基础题4、A【解析】直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题5、A【解析】解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.6、A【解析】首先判断和1的大小关系,再由换底公式和对数函数的单调性判断的大小即可.【详解】因为,所以,综上可得.故选:A【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题7、C【解析】首先判断出为假命题、为真命题,然后结合含有简单逻辑联结词命题的真假性,判断出正确选项.【详解】根据线面平行的判定,我们易得命题若直线,直线平面,则直线平面或直线在平面内,命题为假命题;根据线面垂直的定义,我们易得命题若直线平面,则若直线与平面内的任意直线都垂直,命题为真命题.故:A命题“”为假命题;B命题“”为假命题;C命题“”为真命题;D命题“”为假命题.故选:C.【点睛】本小题主要考查线面平行与垂直有关命题真假性的判断,考查含有简单逻辑联结词的命题的真假性判断,属于基础题.8、C【解析】根据线面平行与垂直的判定与性质逐个分析即可.【详解】因为,所以,因为E、F分别是AB、AD的中点,所以,所以,因为面面,所以.选项A、D显然成立;因为,平面,所以平面,因为平面,所以,所以B项成立;易知平面MEF,平面MPQ,而直线与不垂直,所以C项不成立.故选:C【点睛】本题考查直线与平面的位置关系.属于中档题.9、A【解析】依题意问题是,然后按直到型验证即可.【详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,故选:A.【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.10、C【解析】根据命题的否定,可以写出:,所以选C.11、A【解析】分析:作出函数的图象,利用消元法转化为关于的函数,构造函数求得函数的导数,利用导数研究函数的单调性与最值,即可得到结论.详解:作出函数的图象,如图所示,若,且,则当时,得,即,则满足,则,即,则,设,则,当,解得,当,解得,当时,函数取得最小值,当时,;当时,所以,即的取值范围是,故选A.点睛:本题主要考查了分段函数的应用,构造新函数,求解新函数的导数,利用导数研究新函数的单调性和最值是解答本题的关键,着重考查了转化与化归的数学思想方法,以及分析问题和解答问题的能力,试题有一定的难度,属于中档试题.12、A【解析】利用复数除法运算化简,由此求得对应点所在象限.【详解】依题意,对应点为,在第一象限.故选A.【点睛】本小题主要考查复数除法运算,考查复数对应点的坐标所在象限,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先还原几何体,再根据柱体体积公式求解【详解】空间几何体为一个棱柱,如图,底面为边长为的直角三角形,高为的棱柱,所以体积为【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题14、【解析】根据偶函数的定义列方程,化简求得的值.【详解】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.15、【解析】先确定顶点在底面的射影,再求出三棱锥的高以及各侧面三角形的高,利用各个面的面积和乘以内切球半径等于三棱锥的体积的三倍即可解决.【详解】设顶点在底面上的射影为H,H是三角形ABC的内心,内切圆半径.三个侧面与底面所成的角均为,的高,设内切球的半径为R,内切球表面积.故答案为:.【点睛】本题考查三棱锥内切球的表面积问题,考查学生空间想象能力,本题解题关键是找到内切球的半径,是一道中档题.16、【解析】把已知等式变形,展开两角和与差的三角函数,结合已知求得值【详解】解:由,得,即,又,解得:为正的常数,故答案为:【点睛】本题考查两角和与差的三角函数,考查数学转化思想方法,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案不唯一,具体见解析(2)【解析】(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.【详解】解:(1)因为, 所以,当时,在上单调递减.当时,令,则;令,则,所以在单调递增,在上单调递减.综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)因为,可知,令,得.设,则.当时,在上单调递增,所以在上的值域是,即.当时,没有实根,且,在上单调递减,符合题意.当时,所以有唯一实根,当时,在上单调递增,不符合题意.综上,即的取值范围为.【点睛】本题考查利用导数研究函数的单调性和根据恒成立问题求参数范围,还运用了构造函数法,还考查分类讨论思想和计算能力,属于难题.18、(1);(2)或【解析】(1)消去参数可得圆的直角坐标方程,再根据,即可得极坐标方程;(2)写出直线的极坐标方程为,代入圆的极坐标方程,根据极坐标的意义列出等式解出即可.【详解】(1)圆:,消去参数得:,即:,.,.(2)直线:的极坐标方程为,当时.即:,或.或,直线的倾斜角为或.【点睛】本题主要考查了参数方程化为普通方程,直角坐标方程化为极坐标方程以及极坐标的几何意义,属于中档题.19、()详见解析;()能,或【解析】试题分析:(1)设直线,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线的斜率,再表示;(2)第一步由 ()得的方程为设点的横坐标为,直线与椭圆方程联立求点的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足,的条件就说明存在,否则不存在.试题解析:解:(1)设直线,由得,直线的斜率,即即直线的斜率与的斜率的乘积为定值(2)四边形能为平行四边形直线过点,不过原点且与有两个交点的充要条件是,由 ()得的方程为设点的横坐标为由得,即将点的坐标代入直线的方程得,因此四边形为平行四边形当且仅当线段与线段互相平分,即解得,当的斜率为或时,四边形为平行四边形考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即,分别用方程联立求两个坐标,最后求斜率.20、(1)(2)【解析】(1)利用正弦定理的边角互化可得,再根据,利用两角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【详解】(1)由正弦定理知由己知,而,(2)已知,则由知先求【点睛】本题主要考查了正弦定理解三角形、三角形的性质、两角和的正弦公式,需熟记定理与公式,属于基础题.21、(1)(2)分布列见解析,数学期望(3)建议甲乘坐高铁从市到市.见解析【解析】(1)根据分层抽样的特征可以得知,样本中出行的老年人、中年人、青年人人次分别为,即可按照古典概型的概率计算公式计算得出;(2)依题意可知服从二项分布,先计算出随机选取人次,此人为老年人概率是,所以,即,即可求出的分布列和数学期望;(3)可以计算满意度均值来比较乘坐高铁还是飞机【详解】(1)设事件:“在样本中任取个,这个出行人恰好不是青年人”为, 由表可得:样本中出行的老年人、中年人、青年人人次分别为,所以在样本中任取个,这个出行人恰好不是青年人的概率(2)由题意,的所有可能取值为: 因为在2018年从市到市乘坐高铁的所有成年人中,随机选取人次,此人为老年人概率是,所以, ,所以随机变量的分布列为: 故 (3)答案不唯一,言之有理即可 如可以从满意度的均值来分析问题,参考答案如下:由表可知,乘坐高铁的人满意度均值为:乘坐飞机的人满意度均值为:因为, 所以建议甲乘坐高铁从市到市【点睛】本题主要考查了分层抽样的应用、古典概型的概率计算、以及离散型随机变量的分布列和期望的计算,解题关键是对题意的理解,概率类型的判断,属于中档题22、(1)()证明见解析()(2)存在,【解析】(1)(i)连接交于点,连接,依题意易证四边形为平行四边形,从而有,由此能证明PC平面(ii)推导出,以为原点建立空间直角坐标系,利用向量法求解;(2)设,求出平面的法向量,利用向量法求解.【详解】(1)()证明:连接交于点,连接,因为为线段的中点,所以,因为,所以因为所以四边形为平行四边形所以又因为,所以又因为平面,平面,所以平面()解:如图,在平行四边形中因为,所以以为原点建立空间直角坐标系则,所以, 平面的法向量为设平面的法向量为,则,即,取,得,设平面和平面所成的锐二面角为,则所以锐二面角的余弦值为(2)设所以,设平面的法向量为,则,取,得,因为直线与平面所成的角的正弦值为,所以解得所以存在满足,使得直线与平面所成的角的正弦值为.【点睛】此题二查线面平行的证明,考查锐二面角的余弦值的求法,考查满足线面角的正弦值的点是否存在的判断与求法,考查空间中线线,线面,面面的位置关系等知识,考查了推理能力与计算能力,属于中档题.