2022-2023学年云南大附属中学中考押题数学预测卷含解析.doc
-
资源ID:87795489
资源大小:845KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年云南大附属中学中考押题数学预测卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,A、B、C、D是O上的四点,BD为O的直径,若四边形ABCO是平行四边形,则ADB的大小为()A30°B45°C60°D75°2如图,在RtABC中,ACB90°,CD是AB边上的中线,AC8,BC6,则ACD的正切值是()ABCD3下列方程中,两根之和为2的是()Ax2+2x3=0Bx22x3=0Cx22x+3=0D4x22x3=04一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数从左面看到的这个几何体的形状图的是()ABCD5在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A、B、C上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是ABC的()A三条高的交点B重心C内心D外心6平面直角坐标系中的点P(2m,m)在第一象限,则m的取值范围在数轴上可表示为( )ABCD7如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )ABCD8如图,ABC是O的内接三角形,ADBC于D点,且AC=5,CD=3,BD=4,则O的直径等于( )A5BCD79如图,AB是O的一条弦,点C是O上一动点,且ACB=30°,点E,F分别是AC,BC的中点,直线EF与O交于G,H两点,若O的半径为6,则GE+FH的最大值为()A6B9C10D1210下列各数中,为无理数的是()ABCD二、填空题(共7小题,每小题3分,满分21分)11某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为_m(精确到0.1m,sin63°0.89,cos63°0.45,tan63°1.96)12函数中,自变量的取值范围是_13分解因式:2a44a2+2_14如图,在中,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动连接,线段的长随的变化而变化,当最大时,_.当的边与坐标轴平行时,_.15如图,已知l1l2l3,相邻两条平行直线间的距离相等若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tan的值是_16一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为_17若关于x的方程有增根,则m的值是 三、解答题(共7小题,满分69分)18(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表. 请根据所给信息,解答以下问题: 表中 _ ;_ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.19(5分)解不等式组,请结合题意填空,完成本题的解答(1)解不等式,得 ;(2)解不等式,得 ;(3)把不等式和的解集在数轴上表示出来:(4)原不等式的解集为 20(8分)已知四边形ABCD是O的内接四边形,AC是O的直径,DEAB,垂足为E(1)延长DE交O于点F,延长DC,FB交于点P,如图1求证:PC=PB;(2)过点B作BGAD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2若AB= ,DH=1,OHD=80°,求BDE的大小21(10分)如图,AD是ABC的中线,CFAD于点F,BEAD,交AD的延长线于点E,求证:AF+AE=2AD22(10分)在ABCD中,过点D作DEAB于点E,点F在CD上,CF=AE,连接BF,AF(1)求证:四边形BFDE是矩形;(2)若AF平分BAD,且AE=3,DE=4,求tanBAF的值23(12分)如图,经过原点的抛物线y=x2+2mx(m0)与x轴的另一个交点为A,过点P(1,m)作直线PAx轴于点M,交抛物线于点B记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP(I)当m=3时,求点A的坐标及BC的长;(II)当m1时,连接CA,若CACP,求m的值;(III)过点P作PEPC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标24(14分)如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE求证:AECF参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】解:四边形ABCO是平行四边形,且OA=OC,四边形ABCO是菱形,AB=OA=OB,OAB是等边三角形,AOB=60°,BD是O的直径,点B、D、O在同一直线上,ADB=AOB=30°故选A2、D【解析】根据直角三角形斜边上的中线等于斜边的一半可得CDAD,再根据等边对等角的性质可得AACD,然后根据正切函数的定义列式求出A的正切值,即为tanACD的值【详解】CD是AB边上的中线,CDAD,AACD,ACB90°,BC6,AC8,tanA,tanACD的值故选D【点睛】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出AACD是解本题的关键3、B【解析】由根与系数的关系逐项判断各项方程的两根之和即可【详解】在方程x2+2x-3=0中,两根之和等于-2,故A不符合题意;在方程x2-2x-3=0中,两根之和等于2,故B符合题意;在方程x2-2x+3=0中,=(-2)2-4×3=-80,则该方程无实数根,故C不符合题意;在方程4x2-2x-3=0中,两根之和等于-,故D不符合题意,故选B【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于-、两根之积等于是解题的关键4、B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1据此可画出图形详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B点睛:此题主要考查了几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字5、D【解析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上【详解】三角形的三条垂直平分线的交点到中间的凳子的距离相等,凳子应放在ABC的三条垂直平分线的交点最适当故选D【点睛】本题主要考查了线段垂直平分线的性质的应用;利用所学的数学知识解决实际问题是一种能力,要注意培养想到要使凳子到三个人的距离相等是正确解答本题的关键6、B【解析】根据第二象限中点的特征可得: ,解得: .在数轴上表示为:故选B.考点:(1)、不等式组;(2)、第一象限中点的特征7、C【解析】如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题【详解】解:如图,设O与AC相切于点E,连接OE,作OP1BC垂足为P1交O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,AB=10,AC=8,BC=6,AB2=AC2+BC2,C=10°,OP1B=10°,OP1ACAO=OB,P1C=P1B,OP1=AC=4,P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,PQ长的最大值与最小值的和是1故选:C【点睛】本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型8、A【解析】连接AO并延长到E,连接BE设AE2R,则ABE90°,AEBACB,ADC90°,利用勾股定理求得AD=, 再证明RtABERtADC,得到 ,即2R = 【详解】解:如图,连接AO并延长到E,连接BE设AE2R,则ABE90°,AEBACB;ADBC于D点,AC5,DC3,ADC90°,AD,在RtABE与RtADC中,ABEADC90°,AEBACB,RtABERtADC,即2R = ;O的直径等于故答案选:A.【点睛】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.9、B【解析】首先连接OA、OB,根据圆周角定理,求出AOB=2ACB=60°,进而判断出AOB为等边三角形;然后根据O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可【详解】解:如图,连接OA、OB,ACB=30°,AOB=2ACB=60°,OA=OB,AOB为等边三角形,O的半径为6,AB=OA=OB=6,点E,F分别是AC、BC的中点,EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,当弦GH是圆的直径时,它的最大值为:6×2=12,GE+FH的最大值为:123=1故选:B【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度确定GH的位置是解题的关键.10、D【解析】A=2,是有理数;B=2,是有理数;C,是有理数;D,是无理数,故选D.二、填空题(共7小题,每小题3分,满分21分)11、40.0【解析】首先过点A作AEBD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后RtACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.【详解】过点A作AEBD,交CD于点E,ABBD,CDBD,BAEABDBDE90°,四边形ABDE是矩形,AEBD20m,DEAB0.8m,在RtACE中,CAE63°,CEAEtan63°20×1.9639.2(m),CDCEDE39.20.840.0(m)答:筒仓CD的高约40.0m,故答案为:40.0【点睛】此题考查解直角三角形的应用仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用12、【解析】根据分式有意义的条件是分母不为2;分析原函数式可得关系式x12,解得答案【详解】根据题意得x12,解得:x1;故答案为:x1【点睛】本题主要考查自变量得取值范围的知识点,当函数表达式是分式时,考虑分式的分母不能为213、1(a+1)1(a1)1【解析】原式提取公因式,再利用完全平方公式分解即可【详解】解:原式1(a41a1+1)1(a11)11(a+1)1(a1)1,故答案为:1(a+1)1(a1)1【点睛】本题主要考查提取公因式与公式法的综合运用,关键要掌握提取公因式之后,根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式14、4 【解析】(1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;(2)根据等腰三角形的性质求出CD,分ACy轴、BCx轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【详解】(1),当O,D,C共线时,OC取最大值,此时ODAB.,AOB为等腰直角三角形, ;(2)BC=AC,CD为AB边的高,ADC=90°,BD=DA=AB=4,CD=3,当ACy轴时,ABO=CAB,RtABORtCAD,即,解得,t=,当BCx轴时,BAO=CBD,RtABORtBCD,即,解得,t= ,则当t=或时,ABC的边与坐标轴平行故答案为t=或【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键15、【解析】如图,分别过点A,B作AE,BF,BD,垂足分别为E,F,D.ABC为等腰直角三角形,AC=BC,ACB=90°,ACE+BCF=90°.AE,BFCAE+ACE=90°,CBF+BCF=90°,CAE=BCF,ACE=CBF.CAE=BCF,AC=BC,ACE=CBF,ACECBF,CE=BF,AE=CF.设平行线间距离为d=l,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,tan=tanBAD=.点睛:分别过点A,B作AE,BF,BD,垂足分别为E,F,D,可根据ASA证明ACECBF,设平行线间距离为d=1,进而求出AD、BD的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;16、14s或38s【解析】试题解析:分两种情况进行讨论:如图: 旋转的度数为: 每两秒旋转 如图: 旋转的度数为: 每两秒旋转 故答案为14s或38s.17、1【解析】方程两边都乘以最简公分母(x2),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于1的未知数的值求出x的值,然后代入进行计算即可求出m的值:方程两边都乘以(x2)得,2xm=2(x2)分式方程有增根,x2=1,解得x=222m=2(22),解得m=1三、解答题(共7小题,满分69分)18、(1)0.3,45;(2);(3)【解析】(1)根据频数的和为样本容量,频率的和为1,可直接求解;(2)根据频率可得到百分比,乘以360°即可;(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.【详解】(1)a=0.3,b=45(2)360°×0.3=108°(3)列关系表格为:由表格可知,满足题意的概率为:.考点:1、频数分布表,2、扇形统计图,3、概率19、(1)x1;(1)x1;(3)见解析;(4)1x1.【解析】先求出不等式的解集,再求出不等式组的解集即可【详解】解:(1)解不等式,得x1,(1)解不等式,得x1,(3)把不等式和的解集在数轴上表示出来:;(4)原不等式组的解集为1x1,故答案为x1,x1,1x1【点睛】本题考查了解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键20、(1)详见解析;(2)BDE=20°【解析】(1)根据已知条件易证BCDF,根据平行线的性质可得F=PBC;再利用同角的补角相等证得F=PCB,所以PBC=PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在RtABC中,用锐角三角函数求出ACB=60°,进而判断出DH=OD,求出ODH=20°,再求得NOH=DOC=40°,根据三角形外角的性质可得OAD=DOC=20°,最后根据圆周角定理及平行线的性质即可求解【详解】(1)如图1,AC是O的直径,ABC=90°,DEAB,DEA=90°,DEA=ABC,BCDF,F=PBC,四边形BCDF是圆内接四边形,F+DCB=180°,PCB+DCB=180°,F=PCB,PBC=PCB,PC=PB;(2)如图2,连接OD,AC是O的直径,ADC=90°,BGAD,AGB=90°,ADC=AGB,BGDC,BCDE,四边形DHBC是平行四边形,BC=DH=1,在RtABC中,AB=,tanACB=,ACB=60°,BC=AC=OD,DH=OD,在等腰DOH中,DOH=OHD=80°,ODH=20°,设DE交AC于N,BCDE,ONH=ACB=60°,NOH=180°(ONH+OHD)=40°,DOC=DOHNOH=40°,OA=OD,OAD=DOC=20°,CBD=OAD=20°,BCDE,BDE=CBD=20°【点睛】本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得ODH=20°是解决本题的关键.21、证明见解析.【解析】由题意易用角角边证明BDECDF,得到DF=DE,再用等量代换的思想用含有AE和AF的等式表示AD的长【详解】证明:CFAD于,BEAD,BECF,EBD=FCD,又AD是ABC的中线,BD=CD,在BED与CFD中, ,BEDCFD(AAS)ED=FD,又AD=AF+DF, AD=AE-DE,由+得:AF+AE=2AD.【点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化22、(1)证明见解析(2) 【解析】分析:(1)由已知条件易得BE=DF且BEDF,从而可得四边BFDE是平行四边形,结合EDB=90°即可得到四边形BFDE是矩形;(2)由已知易得AB=5,由AF平分DAB,DCAB可得DAF=BAF=DFA,由此可得DF=AD=5,结合BE=DF可得BE=5,由此可得AB=8,结合BF=DE=4即可求得tanBAF=.详解:(1)四边形ABCD是平行四边形,ABCD,AB=CD, AE=CF,BE=DF, 四边形BFDE是平行四边形 DEAB,DEB=90°,四边形BFDE是矩形; (2)在RtBCF中,由勾股定理,得AD =, 四边形ABCD是平行四边形,ABDC,DFA=FAB AF平分DABDAF=FAB, DAF=DFA,DF=AD=5,四边形BFDE是矩形,BE=DF=5,BF=DE=4,ABF=90°,AB=AE+BE=8,tanBAF= 点睛:(1)熟悉平行四边形的性质和矩形的判定方法是解答第1小题的关键;(2)能由AF平分DAB,DCAB得到DAF=BAF=DFA,进而推得DF=AD=5是解答第2小题的关键.23、(I)4;(II) (III)(2,0)或(0,4)【解析】(I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;(II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如图,利用PMECBP得到PM=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PHy轴于H,如图,利用PHEPBC得到PH=PB=m-1,HE=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE得到E点坐标【详解】解:(I)当m=3时,抛物线解析式为y=x2+6x,当y=0时,x2+6x=0,解得x1=0,x2=6,则A(6,0),抛物线的对称轴为直线x=3,P(1,3),B(1,5),点B关于抛物线对称轴的对称点为CC(5,5),BC=51=4;(II)当y=0时,x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),B(1,2m1),点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,C(2m1,2m1),PCPA,PC2+AC2=PA2,(2m2)2+(m1)2+12+(2m1)2=(2m1)2+m2,整理得2m25m+3=0,解得m1=1,m2=,即m的值为;(III)如图,PEPC,PE=PC,PMECBP,PM=BC=2m2,ME=BP=2m1m=m1,而P(1,m)2m2=m,解得m=2,ME=m1=1,E(2,0);作PHy轴于H,如图,易得PHEPBC,PH=PB=m1,HE=BC=2m2,而P(1,m)m1=1,解得m=2,HE=2m2=2,E(0,4);综上所述,m的值为2,点E的坐标为(2,0)或(0,4)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式24、证明见解析【解析】试题分析:通过全等三角形ADECBF的对应角相等证得AED=CFB,则由平行线的判定证得结论证明:平行四边形ABCD中,AD=BC,ADBC,ADE=CBF在ADE与CBF中,AD=BC,ADE=CBF, DE=BF,ADECBF(SAS)AED=CFBAECF