2022-2023学年四川省资阳市雁江区中考数学适应性模拟试题含解析.doc
-
资源ID:87795579
资源大小:860.50KB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
![游客一键下载](/images/hot.gif)
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年四川省资阳市雁江区中考数学适应性模拟试题含解析.doc
2023年中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列计算结果是x5的为()Ax10÷x2 Bx6x Cx2x3 D(x3)22估计的运算结果应在哪个两个连续自然数之间()A2和1B3和2C4和3D5和43某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A+18B18C+18D184下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是( )ABCD5ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )ABE=DFBAE=CFCAF/CEDBAE=DCF62018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是()A29.8×109B2.98×109C2.98×1010D0.298×10107如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()ABCD8一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离(千米)与快车行驶时间t(小时)之间的函数图象是ABCD9如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1若设道路的宽为xm,则下面所列方程正确的是()A(311x)(10x)=570B31x+1×10x=31×10570C(31x)(10x)=31×10570D31x+1×10x1x1=57010如图,在平面直角坐标系中RtABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,ABC=30°,把RtABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A的坐标为()A(4,2)B(4,2+)C(2,2+)D(2,2)11如图,在5×5的方格纸中将图中的图形N平移到如图所示的位置,那么下列平移正确的是( )A先向下移动1格,再向左移动1格B先向下移动1格,再向左移动2格C先向下移动2格,再向左移动1格D先向下移动2格,再向左移动2格12如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tanAON的值为()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_.14如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为,再沿直线前进5米,到达点C后,又向左旋转角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度为_15关于的分式方程的解为负数,则的取值范围是_.16若不等式组 的解集是x4,则m的取值范围是_17如图,在每个小正方形边长为的网格中,的顶点,均在格点上,为边上的一点.线段的值为_;在如图所示的网格中,是的角平分线,在上求一点,使的值最小,请用无刻度的直尺,画出和点,并简要说明和点的位置是如何找到的(不要求证明)_.18有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则ADE的度数为()A144°B84°C74°D54°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在中,垂足为D,点E在BC上,垂足为,试判断DG与BC的位置关系,并说明理由20(6分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为W元(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?21(6分)在“双十二”期间,两个超市开展促销活动,活动方式如下:超市:购物金额打9折后,若超过2000元再优惠300元;超市:购物金额打8折某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少(直接写出方案)22(8分)下面是一位同学的一道作图题:已知线段a、b、c(如图),求作线段x,使他的作法如下:(1)以点O为端点画射线,(2)在上依次截取,(3)在上截取(4)联结,过点B作,交于点D所以:线段_就是所求的线段x试将结论补完整这位同学作图的依据是_如果,试用向量表示向量23(8分)如图,一次函数y=kx+b(k、b为常数,k0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n0)的图象在第二象限交于点CCDx轴,垂足为D,若OB=2OA=3OD=1(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求CDE的面积;(3)直接写出不等式kx+b的解集24(10分)如图,四边形ABCD为平行四边形,BAD的角平分线AF交CD于点E,交BC的延长线于点F(1)求证:BF=CD;(2)连接BE,若BEAF,BFA=60°,BE=,求平行四边形ABCD的周长25(10分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)26(12分)如图,已知D是AC上一点,AB=DA,DEAB,B=DAE求证:BC=AE27(12分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀从中任意摸出1个球,恰好摸到红球的概率是 ;先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】解:Ax10÷x2=x8,不符合题意;Bx6x不能进一步计算,不符合题意;Cx2x3=x5,符合题意;D(x3)2=x6,不符合题意故选C2、C【解析】根据二次根式的性质,可化简得=3=2,然后根据二次根式的估算,由324可知2在4和3之间故选C点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.3、B【解析】根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.4、D【解析】A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第二象限内y随x的增大而减增大,故本选项错误;C、根据函数的图象可知,当x0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x0时,y随x的增大而减小;故本选项正确故选 D【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.5、B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,四边形ABCD是平行四边形,OA=OC,OB=OD,BE=DF,OE=OF,四边形AECF是平行四边形,故不符合题意; B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,四边形ABCD是平行四边形,OA=OC,AF/CE,FAO=ECO,又AOF=COE,AOFCOE,AF=CE,AF CE,四边形AECF是平行四边形,故不符合题意; D、如图,四边形ABCD是平行四边形,AB=CD,AB/CD,ABE=CDF,又BAE=DCF,ABECDF,AE=CF,AEB=CFD,AEO=CFO,AE/CF,AE CF,四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.6、B【解析】根据科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,且为这个数的整数位数减1,由此即可解答【详解】29.8亿用科学记数法表示为: 29.8亿=29800000002.98×1故选B【点睛】本题考查了科学记数法的表示方法科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值7、A【解析】根据题意找到等量关系:矩形面积+三角形面积阴影面积30;(矩形面积阴影面积)(三角形面积阴影面积)4,据此列出方程组【详解】依题意得:故选A【点睛】考查了由实际问题抽象出二元一次方程组根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组8、C【解析】分三段讨论:两车从开始到相遇,这段时间两车距迅速减小;相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C选项符合题意故选C9、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(311x)(10x)=570,故选A.10、D【解析】解:作ADBC,并作出把RtABC先绕B点顺时针旋转180°后所得A1BC1,如图所示AC=2,ABC=10°,BC=4,AB=2,AD=,BD=1点B坐标为(1,0),A点的坐标为(4,)BD=1,BD1=1,D1坐标为(2,0),A1坐标为(2,)再向下平移2个单位,A的坐标为(2,2)故选D点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键11、C【解析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在5×5方格纸中将图中的图形N平移后的位置如图所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.12、A【解析】过O作OCAB于C,过N作NDOA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在RtNDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tanAON=求出即可【详解】过O作OCAB于C,过N作NDOA于D,N在直线y=x+3上,设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,A(-4,0),B(0,3),即OA=4,OB=3,在AOB中,由勾股定理得:AB=5,在AOB中,由三角形的面积公式得:AO×OB=AB×OC,3×4=5OC,OC=,在RtNOM中,OM=ON,MON=90°,MNO=45°,sin45°=,ON=,在RtNDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,N在第二象限,x只能是-,x+3=,即ND=,OD=,tanAON=故选A【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强二、填空题:(本大题共6个小题,每小题4分,共24分)13、4【解析】根据扇形的面积公式可得:扇形AOB的面积为,故答案为4.14、【解析】根据共走了45米,每次前进5米且左转的角度相同,则可计算出该正多边形的边数,再根据外角和计算左转的角度【详解】连续左转后形成的正多边形边数为:,则左转的角度是故答案是:【点睛】本题考查了多边形的外角计算,正确理解多边形的外角和是360°是关键15、【解析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a-1解得:a1且a2,故答案为: a1且a2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析16、m1【解析】不等式组的解集是x1,m1,故答案为m117、() ()如图,取格点、,连接与交于点,连接与交于点. 【解析】()根据勾股定理进行计算即可.()根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出是的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于点P,此时的值最小【详解】()根据勾股定理得AC=;故答案为:1()如图,如图,取格点、,连接与交于点,连接与交于点,则点P即为所求 说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题18、B【解析】正五边形的内角是ABC=108°,AB=BC,CAB=36°,正六边形的内角是ABE=E=120°,ADE+E+ABE+CAB=360°,ADE=360°120°120°36°=84°,故选B三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、DGBC,理由见解析【解析】由垂线的性质得出CDEF,由平行线的性质得出2=DCE,再由已知条件得出1=DCE,即可得出结论【详解】解:DGBC,理由如下:CDAB,EFAB,CDEF,2=DCE,1=2,1=DCE,DGBC【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明1=DCE是解题关键20、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.【解析】(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案【详解】(1)根据题意得:(x20)(2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x20)(2x+1)=2(x30)2+200,a=2,抛物线开口向下,当x30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元当x=28时,W最大=2×(2830)2+200=192(元)销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键21、(1)这种篮球的标价为每个50元;(2)见解析【解析】(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x元,依题意,得,解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,单独在B超市购买:100×50×0.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.22、CD;平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;.【解析】根据作图依据平行线分线段成比例定理求解可得;根据“平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例”可得;先证得,即,从而知【详解】,OA:AB=OC:CD,线段就是所求的线段x,故答案为:这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;、,且,即,【点睛】本题主要考查作图复杂作图,解题的关键是熟练掌握平行线分线段成比例定理、相似三角形的判定及向量的计算23、(1)y=2x+1;y=;(2)140;(3)x10,或4x0;【解析】(1)根据OA、OB的长写出A、B两点的坐标,再用待定系数法求解一次函数的解析式,然后求得点C的坐标,进而求出反比例函数的解析式.(2)联立方程组求解出交点坐标即可.(3)观察函数图象,当函数y=kx+b的图像处于下方或与其有重合点时,x的取值范围即为的解集.【详解】(1)由已知,OA=6,OB=1,OD=4,CDx轴,OBCD,ABOACD,CD=20,点C坐标为(4,20),n=xy=80.反比例函数解析式为:y=,把点A(6,0),B(0,1)代入y=kx+b得:,解得:.一次函数解析式为:y=2x+1,(2)当=2x+1时,解得,x1=10,x2=4,当x=10时,y=8,点E坐标为(10,8),SCDE=SCDA+SEDA=.(3)不等式kx+b,从函数图象上看,表示一次函数图象不低于反比例函数图象,由图象得,x10,或4x0.【点睛】本题考查了应用待定系数法求一次函数和反比例函数解析式以及用函数的观点通过函数图像解不等式.24、(1)证明见解析;(2)12【解析】(1)由平行四边形的性质和角平分线得出BAF=BFA,即可得出AB=BF;(2)由题意可证ABF为等边三角形,点E是AF的中点. 可求EF、BF的值,即可得解【详解】解:(1)证明: 四边形ABCD为平行四边形, AB=CD,FAD=AFB又 AF平分BAD, FAD=FAB AFB=FAB AB=BF BF=CD(2)解:由题意可证ABF为等边三角形,点E是AF的中点在RtBEF中,BFA=60°,BE=,可求EF=2,BF=4 平行四边形ABCD的周长为1225、调整后的滑梯AD比原滑梯AB增加2.5米【解析】试题分析: RtABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在RtABC中,求得AB的长后用即可求得增加的长度试题解析: RtABD中,AC=3米,AD=2AC=6(m)在RtABC中, ADAB=63.532.5(m).调整后的滑梯AD比原滑梯AB增加2.5米.26、见解析【解析】证明:DEAB,CAB=ADE在ABC和DAE中,ABCDAE(ASA)BC=AE【点睛】根据两直线平行,内错角相等求出CAB=ADE,然后利用“角边角”证明ABC和DAE全等,再根据全等三角形对应边相等证明即可27、(1)(2)【解析】试题分析:(1)因为总共有4个球,红球有2个,因此可直接求得红球的概率;(2)根据题意,列表表示小球摸出的情况,然后找到共12种可能,而两次都是红球的情况有2种,因此可求概率.试题解析:解:(1)(2)用表格列出所有可能的结果: 第二次第一次红球1红球2白球黑球红球1(红球1,红球2)(红球1,白球)(红球1,黑球)红球2(红球2,红球1)(红球2,白球)(红球2,黑球)白球(白球,红球1)(白球,红球2)(白球,黑球)黑球(黑球,红球1)(黑球,红球2)(黑球,白球)由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能P(两次都摸到红球)=考点:概率统计