2022-2023学年山西省太原市第五中学高三六校第一次联考数学试卷含解析.doc
2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设集合,则( )ABCD2设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD3中国古代数学著作孙子算经中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( )ABCD4圆心为且和轴相切的圆的方程是( )ABCD5已知复数为虚数单位) ,则z 的虚部为( )A2BC4D6已知双曲线:的左、右两个焦点分别为,若存在点满足,则该双曲线的离心率为( )A2BCD57已知向量,则向量与的夹角为( )ABCD8已知,则的值构成的集合是( )ABCD9已知当,时,则以下判断正确的是 ABCD与的大小关系不确定10已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是( )ABCD11已知函数,若,对任意恒有,在区间上有且只有一个使,则的最大值为( )ABCD12已知函数,若曲线在点处的切线方程为,则实数的取值为( )A-2B-1C1D2二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,若双曲线经过点(3,4),则该双曲线的准线方程为_14已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_.15某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是_.2至3月份的收入的变化率与11至12月份的收入的变化率相同;支出最高值与支出最低值的比是6:1;第三季度平均收入为50万元;利润最高的月份是2月份16已知向量,若,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,记的最大值与最小值分别为M,m,求的值.18(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望参考公式:,19(12分)已知点到抛物线C:y1=1px准线的距离为1()求C的方程及焦点F的坐标;()设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB,分别交x轴于M,N两点,求的值20(12分)已知函数(),不等式的解集为.(1)求的值;(2)若,且,求的最大值.21(12分)已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.22(10分)如图,正方体的棱长为2,为棱的中点.(1)面出过点且与直线垂直的平面,标出该平面与正方体各个面的交线(不必说明画法及理由);(2)求与该平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意,求出集合A,进而求出集合和,分析选项即可得到答案.【详解】根据题意,则故选:D【点睛】此题考查集合的交并集运算,属于简单题目,2、D【解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.3、C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.4、A【解析】求出所求圆的半径,可得出所求圆的标准方程.【详解】圆心为且和轴相切的圆的半径为,因此,所求圆的方程为.故选:A.【点睛】本题考查圆的方程的求解,一般求出圆的圆心和半径,考查计算能力,属于基础题.5、A【解析】对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.6、B【解析】利用双曲线的定义和条件中的比例关系可求.【详解】.选B.【点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.7、C【解析】求出,进而可求,即能求出向量夹角.【详解】解:由题意知,. 则 所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式 进行计算.8、C【解析】对分奇数、偶数进行讨论,利用诱导公式化简可得.【详解】为偶数时,;为奇数时,则的值构成的集合为.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.9、C【解析】由函数的增减性及导数的应用得:设,求得可得为增函数,又,时,根据条件得,即可得结果【详解】解:设,则,即为增函数,又,即,所以,所以故选:C【点睛】本题考查了函数的增减性及导数的应用,属中档题10、A【解析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,当时,则当时,单减,当时,单增;当时,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题11、C【解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【详解】由题意知,则其中,又在上有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.12、B【解析】求出函数的导数,利用切线方程通过f(0),求解即可;【详解】f (x)的定义域为(1,+),因为f(x)a,曲线yf(x)在点(0,f(0)处的切线方程为y2x,可得1a2,解得a1,故选:B【点睛】本题考查函数的导数的几何意义,切线方程的求法,考查计算能力二、填空题:本题共4小题,每小题5分,共20分。13、【解析】代入求解得,再求准线方程即可.【详解】解:双曲线经过点,解得,即又,故该双曲线的准线方程为: 故答案为:【点睛】本题主要考查了双曲线的准线方程求解,属于基础题.14、【解析】先推导出函数的周期为,可得出,代值计算,即可求出实数的值.【详解】由于函数是定义在上的奇函数,则,又该函数的图象关于直线对称,则,所以,则,所以,函数是周期为的周期函数,所以,解得.故答案为:.【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.15、【解析】通过图片信息直接观察,计算,找出答案即可【详解】对于,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确对于,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确对于,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,故第三季度的平均收入为50万元,正确对于,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是806020万元,错误故答案为【点睛】本题考查利用图象信息,分析归纳得出正确结论,属于基础题目16、-1【解析】由向量垂直得向量的数量积为0,根据数量积的坐标运算可得结论【详解】由已知,故答案为:1【点睛】本题考查向量垂直的坐标运算掌握向量垂直与数量积的关系是解题关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)求导.根据单调,转化为对恒成立求解(2)由(1)知,是的两个根,不妨设,令. 根据,确定,将转化为. 令,用导数法研究其单调性求最值.【详解】(1)的定义域为,.因为单调,所以对恒成立,所以,恒成立,因为,当且仅当时取等号,所以;(2)由(1)知,是的两个根.从而,不妨设,则. 因为,所以t为关于a的减函数,所以. 令,则. 因为当时,在上为减函数.所以当时,.从而,所以在上为减函数.所以当时,.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.18、(1);(2)见解析【解析】试题分析:(I)由题意可得,则,关于的线性回归方程为(II)由题意可知二人所获购物券总金额的可能取值有、元,它们所对应的概率分别为:,据此可得分布列,计算相应的数学期望为元试题解析:(I)依题意:,则关于的线性回归方程为(II)二人所获购物券总金额的可能取值有、元,它们所对应的概率分别为:,所以,总金额的分布列如下表:03006009001200总金额的数学期望为元19、 ()C的方程为,焦点F的坐标为(1,0);()1【解析】()根据抛物线定义求出p,即可求C的方程及焦点F的坐标;()设点A(x1,y1),B(x1,y1),由已知得Q(1,1),由题意直线AB斜率存在且不为0,设直线AB的方程为y=k(x+1)1(k0),与抛物线联立可得ky1-4y+4k-8=0,利用韦达定理以及弦长公式,转化求解|MF|NF|的值【详解】()由已知得,所以p=1.所以抛物线C的方程为,焦点F的坐标为(1,0);(II)设点A(x1,y1),B(x1,y1),由已知得Q(1,1),由题意直线AB斜率存在且不为0.设直线AB的方程为y=k(x+1)1(k0).由得,则,.因为点A,B在抛物线C上,所以,.因为PFx轴,所以,所以|MF|NF|的值为1.【点睛】本题考查抛物线的定义、标准方程及直线与抛物线中的定值问题,常用韦达定理设而不求来求解,本题解题关键是找出弦长与斜率之间的关系进行求解,属于中等题.20、(1)(2)32【解析】利用绝对值不等式的解法求出不等式的解集,得到关于的方程,求出的值即可;由知可得,,利用三个正数的基本不等式,构造和是定值即可求出的最大值.【详解】(1),所以不等式的解集为,即为不等式的解集为,的解集为,即不等式的解集为,化简可得,不等式的解集为,所以,即.(2),.又,当且仅当,等号成立,即,时,等号成立,的最大值为32.【点睛】本题主要考查含有两个绝对值不等式的解法和三个正数的基本不等式的灵活运用;其中利用构造出和为定值即为定值是求解本题的关键;基本不等式取最值的条件:一正二定三相等是本题的易错点;属于中档题.21、(1)(2)存在,【解析】由数列为“数列”可得,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,两式相减得,据此可得,当时,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得, 在中令,则可得,故所以,所以数列是以为首项,以为公比的等比数列,所以,因为,所以. (2)由题意得,故,两式相减得 所以,当时,又因为所以当时,所以成立,所以当时,数列是常数列, 所以 因为当时,成立,所以,所以在中令,因为,所以可得,所以,由时,且为整数,可得,把分别代入不等式可得,,所以存在数列符合题意,的所有值为.【点睛】本题考查数列的新定义、等比数列的通项公式和数列递推公式的运用;考查运算求解能力、逻辑推理能力和对新定义的理解能力;通过反复利用递推公式,得到数列为常数列是求解本题的关键;属于综合型强、难度大型试题.22、(1)见解析(2).【解析】(1)与平面垂直,过点作与平面平行的平面即可(2)建立空间直角坐标系求线面角正弦值【详解】解:(1)截面如下图所示:其中,分别为边,的中点,则垂直于平面.(2)建立如图所示的空间直角坐标系,则,所以,.设平面的一个法向量为,则.不妨取,则,所以与该平面所成角的正弦值为.(若将作为该平面法向量,需证明与该平面垂直)【点睛】考查确定平面的方法以及线面角的求法,中档题.