2022-2023学年广西壮族自治区百色市田东中学高三(最后冲刺)数学试卷含解析.doc
-
资源ID:87795770
资源大小:1.71MB
全文页数:18页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年广西壮族自治区百色市田东中学高三(最后冲刺)数学试卷含解析.doc
2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1半径为2的球内有一个内接正三棱柱,则正三棱柱的侧面积的最大值为( )ABCD2已知命题:使成立 则为( )A均成立B均成立C使成立D使成立3已知l,m是两条不同的直线,m平面,则“”是“lm”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件4已知、分别为双曲线:(,)的左、右焦点,过的直线交于、两点,为坐标原点,若,则的离心率为( )A2BCD5执行如图所示的程序框图,则输出的值为( )ABCD6设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,则椭圆的离心率为( )ABCD7ABCD8设,满足约束条件,若的最大值为,则的展开式中项的系数为( )A60B80C90D1209对两个变量进行回归分析,给出如下一组样本数据:,下列函数模型中拟合较好的是( )ABCD10已知集合,则()ABCD11设,则、的大小关系为( )ABCD12设数列的各项均为正数,前项和为,且,则( )A128B65C64D63二、填空题:本题共4小题,每小题5分,共20分。13在的展开式中,常数项为_.(用数字作答)14已知实数,满足约束条件,则的最大值是_.15已知,则_,_.16双曲线的焦距为_,渐近线方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设,其中(1)当时,求的值;(2)对,证明:恒为定值18(12分)已知椭圆:的离心率为,左、右顶点分别为、,过左焦点的直线交椭圆于、两点(异于、两点),当直线垂直于轴时,四边形的面积为1(1)求椭圆的方程;(2)设直线、的交点为;试问的横坐标是否为定值?若是,求出定值;若不是,请说明理由19(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)若,求曲线与的交点坐标;(2)过曲线上任意一点作与夹角为45°的直线,交于点,且的最大值为,求的值.20(12分)如图,在四棱锥中,是等边三角形,.(1)若,求证:平面;(2)若,求二面角的正弦值21(12分)已知函数f(x)|x1|x2|.若不等式|ab|ab|a|f(x)(a0,a、bR)恒成立,求实数x的取值范围22(10分)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.理科方向文科方向总计男110女50总计(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求的分布列、期望和方差.参考公式:,其中.参考临界值: 0.100.050.0250.0100.0050.001 2.7063.8415.0246.6357.87910.828参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】设正三棱柱上下底面的中心分别为,底面边长与高分别为,利用,可得,进一步得到侧面积,再利用基本不等式求最值即可.【详解】如图所示.设正三棱柱上下底面的中心分别为,底面边长与高分别为,则,在中,化为,当且仅当时取等号,此时.故选:B.【点睛】本题考查正三棱柱与球的切接问题,涉及到基本不等式求最值,考查学生的计算能力,是一道中档题.2、A【解析】试题分析:原命题为特称命题,故其否定为全称命题,即考点:全称命题.3、A【解析】根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m平面时,若l”则“lm”成立,即充分性成立,若lm,则l或l,即必要性不成立,则“l”是“lm”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题4、D【解析】作出图象,取AB中点E,连接EF2,设F1Ax,根据双曲线定义可得x2a,再由勾股定理可得到c27a2,进而得到e的值【详解】解:取AB中点E,连接EF2,则由已知可得BF1EF2,F1AAEEB,设F1Ax,则由双曲线定义可得AF22a+x,BF1BF23x2ax2a,所以x2a,则EF22a,由勾股定理可得(4a)2+(2a)2(2c)2,所以c27a2,则e故选:D【点睛】本题考查双曲线定义的应用,考查离心率的求法,数形结合思想,属于中档题对于圆锥曲线中求离心率的问题,关键是列出含有 中两个量的方程,有时还要结合椭圆、双曲线的定义对方程进行整理,从而求出离心率.5、B【解析】列出每一次循环,直到计数变量满足退出循环.【详解】第一次循环:;第二次循环:;第三次循环:,退出循环,输出的为.故选:B.【点睛】本题考查由程序框图求输出的结果,要注意在哪一步退出循环,是一道容易题.6、C【解析】根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.【详解】设,则由椭圆的定义,可以得到,在中,有,解得在中,有整理得,故选C项.【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出关系,得到离心率.属于中档题.7、A【解析】直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题8、B【解析】画出可行域和目标函数,根据平移得到,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,即,故表示直线与截距的倍,根据图像知:当时,的最大值为,故.展开式的通项为:,取得到项的系数为:.故选:.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.9、D【解析】作出四个函数的图象及给出的四个点,观察这四个点在靠近哪个曲线【详解】如图,作出A,B,C,D中四个函数图象,同时描出题中的四个点,它们在曲线的两侧,与其他三个曲线都离得很远,因此D是正确选项,故选:D【点睛】本题考查回归分析,拟合曲线包含或靠近样本数据的点越多,说明拟合效果好10、A【解析】根据对数性质可知,再根据集合的交集运算即可求解.【详解】,集合,由交集运算可得.故选:A.【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.11、D【解析】因为,所以且在上单调递减,且 所以,所以,又因为,所以,所以.故选:D.【点睛】本题考查利用指对数函数的单调性比较指对数的大小,难度一般.除了可以直接利用单调性比较大小,还可以根据中间值“”比较大小.12、D【解析】根据,得到,即,由等比数列的定义知数列是等比数列,然后再利用前n项和公式求.【详解】因为,所以,所以,所以数列是等比数列,又因为,所以,.故选:D【点睛】本题主要考查等比数列的定义及等比数列的前n项和公式,还考查了运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.14、【解析】令,所求问题的最大值为,只需求出即可,作出可行域,利用几何意义即可解决.【详解】作出可行域,如图令,则,显然当直线经过时,最大,且,故的最大值为.故答案为:.【点睛】本题考查线性规划中非线性目标函数的最值问题,要做好此类题,前提是正确画出可行域,本题是一道基础题.15、 【解析】利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大16、6 【解析】由题得 所以焦距,故第一个空填6.由题得渐近线方程为.故第二个空填.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)1【解析】分析:(1)当时可得,可得.(2)先得到关系式,累乘可得,从而可得,即为定值详解:(1)当时,又,所以. (2) 即,由累乘可得,又,所以即恒为定值1点睛:本题考查组合数的有关运算,解题时要注意所给出的的定义,并结合组合数公式求解由于运算量较大,解题时要注意运算的准确性,避免出现错误18、(1)(2)是为定值,的横坐标为定值【解析】(1)根据“直线垂直于轴时,四边形的面积为1”列方程,由此求得,结合椭圆离心率以及,求得,由此求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆方程,化简后写出根与系数关系.求得直线的方程,并求得两直线交点的横坐标,结合根与系数关系进行化简,求得的横坐标为定值.【详解】(1)依题意可知,解得,即;而,即,结合解得,因此椭圆方程为(2)由题意得,左焦点,设直线的方程为:,由消去并整理得,直线的方程为:,直线的方程为:联系方程,解得,又因为所以所以的横坐标为定值【点睛】本小题主要考查根据椭圆离心率求椭圆方程,考查直线和椭圆的位置关系,考查直线和直线交点坐标的求法,考查运算求解能力,属于中档题.19、(1),;(2)或【解析】(1)将曲线的极坐标方程和直线的参数方程化为直角坐标方程,联立方程,即可求得曲线与的交点坐标;(2)由直线的普通方程为,故上任意一点,根据点到直线距离公式求得到直线的距离,根据三角函数的有界性,即可求得答案.【详解】(1),.由,得,曲线的直角坐标方程为.当时,直线的普通方程为由解得或.从而与的交点坐标为,.(2)由题意知直线的普通方程为,的参数方程为(为参数)故上任意一点到的距离为则.当时,的最大值为所以;当时,的最大值为,所以.综上所述,或【点睛】解题关键是掌握极坐标和参数方程化为直角坐标方程的方法,和点到直线距离公式,考查了分析能力和计算能力,属于中档题.20、(1)详见解析(2)【解析】(1)如图,作,交于,连接.因为,所以是的三等分点,可得.因为,所以,因为,所以,因为,所以,所以, 因为,所以,所以,因为平面,平面,所以平面.又,平面,平面,所以平面.因为,、平面,所以平面平面,所以平面.(2)因为是等边三角形,所以.又因为,所以,所以.又,平面,所以平面.因为平面,所以平面平面.在平面内作平面.以B点为坐标原点,分别以所在直线为轴,建立如图所示的空间直角坐标系,则,所以,.设为平面的法向量,则,即,令,可得.设为平面的法向量,则,即,令,可得.所以,则,所以二面角的正弦值为.21、x【解析】由题知,|x1|x2|恒成立,故|x1|x2|不大于的最小值|ab|ab|abab|2|a|,当且仅当(ab)·(ab)0时取等号,的最小值等于2.x的范围即为不等式|x1|x2|2的解,解不等式得x.22、(1)列联表见解析,有;(2)分布列见解析, .【解析】(1)由频率分布直方图可得分数在、之间的学生人数,可得列联表.根据列联表计算的值,结合参考临界值表可得到结论;(2)从该校高一学生中随机抽取1人,求出该人为“文科方向”的概率.由题意,求出分布列,根据公式求出期望和方差.【详解】(1)由频率分布直方图可得分数在之间的学生人数为,在之间的学生人数为,所以低于60分的学生人数为120.因此列联表为理科方向文科方向总计男8030110女405090总计12080200又,所以有99%的把握认为是否为“文科方向”与性别有关.(2)易知从该校高一学生中随机抽取1人,则该人为“文科方向”的概率为.依题意知,所以(),所以的分布列为0123P所以期望,方差.【点睛】本题考查独立性检验,考查离散型随机变量的分布列、期望和方差,属于中档题.