2022-2023学年广西桂林市宝贤中学初中数学毕业考试模拟冲刺卷含解析.doc
-
资源ID:87795841
资源大小:755.50KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年广西桂林市宝贤中学初中数学毕业考试模拟冲刺卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,已知是的角平分线,是的垂直平分线,则的长为( )A6B5C4D2的算术平方根是()A4B±4C2D±23如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是A点A和点CB点B和点DC点A和点DD点B和点C4若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )A矩形B菱形C对角线互相垂直的四边形D对角线相等的四边形5如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A1BCD6有三张正面分别标有数字2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )ABCD7点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是( )A1 B-6 C2或-6 D不同于以上答案8函数的自变量x的取值范围是( )Ax>1Bx<1Cx1Dx19一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )ABCD10如图,半O的半径为2,点P是O直径AB延长线上的一点,PT切O于点T,M是OP的中点,射线TM与半O交于点C若P20°,则图中阴影部分的面积为()A1+B1+C2sin20°+D二、填空题(共7小题,每小题3分,满分21分)11如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;依此类推,则平行四边形AO4C5B的面积为_12有下列各式:;其中,计算结果为分式的是_(填序号)13若m是方程2x23x10的一个根,则6m29m+2016的值为_14如图,ABC中,AD是中线,BC=8,B=DAC,则线段 的长为_15如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_.16一只蚂蚁从数轴上一点 A出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_17如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则1的度数为_三、解答题(共7小题,满分69分)18(10分)已知:如图,在RtABO中,B=90°,OAB=10°,OA=1以点O为原点,斜边OA所在直线为x轴,建立平面直角坐标系,以点P(4,0)为圆心,PA长为半径画圆,P与x轴的另一交点为N,点M在P上,且满足MPN=60°P以每秒1个单位长度的速度沿x轴向左运动,设运动时间为ts,解答下列问题:(发现)(1)的长度为多少;(2)当t=2s时,求扇形MPN(阴影部分)与RtABO重叠部分的面积(探究)当P和ABO的边所在的直线相切时,求点P的坐标(拓展)当与RtABO的边有两个交点时,请你直接写出t的取值范围19(5分)深圳某书店为了迎接“读书节”制定了活动计划,以下是活动计划书的部分信息:“读书节“活动计划书书本类别科普类文学类进价(单位:元)1812备注(1)用不超过16800元购进两类图书共1000本;科普类图书不少于600本;(1)已知科普类图书的标价是文学类图书标价的1.5倍,若顾客用540元购买的图书,能单独购买科普类图书的数量恰好比单独购买文学类图书的数量少10本,请求出两类图书的标价;经市场调査后发现:他们高估了“读书节”对图书销售的影响,便调整了销售方案,科普类图书每本标价降低a(0a5)元销售,文学类图书价格不变,那么书店应如何进货才能获得最大利润?20(8分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为W元(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?21(10分)如图,在平面直角坐标系xOy中,一次函数yx与反比例函数的图象相交于点.(1)求a、k的值;(2)直线xb()分别与一次函数yx、反比例函数的图象相交于点M、N,当MN2时,画出示意图并直接写出b的值.22(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶已知BC=80千米,A=45°,B=30°开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:1.41,1.73)23(12分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点(1)判断:一个内角为120°的菱形等距四边形(填“是”或“不是”)(2)如图2,在5×5的网格图中有A、B两点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长端点均为非等距点的对角线长为 端点均为非等距点的对角线长为(3)如图1,已知ABE与CDE都是等腰直角三角形,AEB=DEC=90°,连结AD,AC,BC,若四边形ABCD是以A为等距点的等距四边形,求BCD的度数24(14分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.(1)请写出两个“关于轴对称的二次函数”;(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据ED是BC的垂直平分线、BD是角平分线以及A=90°可求得C=DBC=ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90°,C+ABD+DBC=90°,C=DBC=ABD=30°,BD=2AD=6,CD=6,CE =3,故选D【点睛】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.2、C【解析】先求出的值,然后再利用算术平方根定义计算即可得到结果【详解】4,4的算术平方根是2,所以的算术平方根是2,故选C【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键3、C【解析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.4、C【解析】【分析】如图,根据三角形的中位线定理得到EHFG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案【点睛】如图,E,F,G,H分别是边AD,DC,CB,AB的中点,EH=AC,EHAC,FG=AC,FGAC,EF=BD,EHFG,EH=FG,四边形EFGH是平行四边形,假设AC=BD,EH=AC,EF=BD,则EF=EH,平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键5、C【解析】由题意知:AB=BE=6,BD=ADAB=2(图2中),AD=ABBD=4(图3中);CEAB,ECFADF,得,即DF=2CF,所以CF:CD=1:3,故选C【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.6、C【解析】画树状图得:共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】运用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件7、C【解析】解:点A为数轴上的表示-1的动点,当点A沿数轴向左移动4个单位长度时,点B所表示的有理数为-1-4=-6;当点A沿数轴向右移动4个单位长度时,点B所表示的有理数为-1+4=1故选C点睛:注意数的大小变化和平移之间的规律:左减右加与点A的距离为4个单位长度的点B有两个,一个向左,一个向右8、C【解析】试题分析:根据二次根式的性质,被开方数大于或等于0,可以求出x的范围试题解析:根据题意得:1-x0,解得:x1故选C考点:函数自变量的取值范围9、B【解析】袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.10、A【解析】连接OT、OC,可求得COM=30°,作CHAP,垂足为H,则CH=1,于是,S阴影=SAOC+S扇形OCB,代入可得结论【详解】连接OT、OC,PT切O于点T,OTP=90°,P=20°,POT=70°,M是OP的中点,TM=OM=PM,MTO=POT=70°,OT=OC,MTO=OCT=70°,OCT=180°-2×70°=40°,COM=30°,作CHAP,垂足为H,则CH=OC=1,S阴影=SAOC+S扇形OCB=OACH+=1+,故选A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系二、填空题(共7小题,每小题3分,满分21分)11、【解析】试题分析:根据矩形的性质求出AOB的面积等于矩形ABCD的面积的,求出AOB的面积,再分别求出、的面积,即可得出答案四边形ABCD是矩形,AO=CO,BO=DO,DCAB,DC=AB,考点:矩形的性质;平行四边形的性质点评:本题考查了矩形的性质,平行四边形的性质,三角形的面积的应用,解此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等12、【解析】根据分式的定义,将每个式子计算后,即可求解.【详解】=1不是分式,=,=3不是分式,=故选.【点睛】本题考查分式的判断,解题的关键是清楚分式的定义.13、2【解析】把xm代入方程,求出2m23m2,再变形后代入,即可求出答案【详解】解:m是方程2x23x20的一个根,代入得:2m23m20,2m23m2,6m29m+20263(2m23m)+20263×2+20262,故答案为:2【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m23m214、【解析】已知BC=8, AD是中线,可得CD=4, 在CBA和CAD中, 由B=DAC,C=C, 可判定CBACAD,根据相似三角形的性质可得 , 即可得AC2=CDBC=4×8=32,解得AC=4. 15、61【解析】分析: 要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.详解: 如图:AM2=AB2+BM2=16+(5+2)2=65;如图:AM2=AC2+CM2=92+4=85;如图:AM2=52+(4+2)2=61.蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.点睛: 此题主要考查了平面展开图,求最短路径,解决此类题目的关键是把长方体的侧面展开“化立体为平面”,用勾股定理解决.16、6 或 8【解析】试题解析:当往右移动时,此时点A 表示的点为6,当往左移动时,此时点A 表示的点为8.17、60°【解析】先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)×180°÷6=120°,1=120°-60°=60°.故答案为:60°.【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) ×180°是解答本题的关键.三、解答题(共7小题,满分69分)18、【发现】(3)的长度为;(2)重叠部分的面积为;【探究】:点P的坐标为;或或;【拓展】t的取值范围是或,理由见解析【解析】发现:(3)先确定出扇形半径,进而用弧长公式即可得出结论;(2)先求出PA=3,进而求出PQ,即可用面积公式得出结论;探究:分圆和直线AB和直线OB相切,利用三角函数即可得出结论;拓展:先找出和直角三角形的两边有两个交点时的分界点,即可得出结论【详解】发现(3)P(2,0),OP=2OA=3,AP=3,的长度为故答案为;(2)设P半径为r,则有r=23=3,当t=2时,如图3,点N与点A重合,PA=r=3,设MP与AB相交于点Q在RtABO中,OAB=30°,MPN=60°PQA=90°,PQPA,AQ=AP×cos30°,S重叠部分=SAPQPQ×AQ即重叠部分的面积为探究如图2,当P与直线AB相切于点C时,连接PC,则有PCAB,PC=r=3OAB=30°,AP=2,OP=OAAP=32=3;点P的坐标为(3,0); 如图3,当P与直线OB相切于点D时,连接PD,则有PDOB,PD=r=3,PDAB,OPD=OAB=30°,cosOPD,OP,点P的坐标为(,0);如图2,当P与直线OB相切于点E时,连接PE,则有PEOB,同可得:OP;点P的坐标为(,0); 拓展t的取值范围是2t3,2t4,理由:如图4,当点N运动到与点A重合时,与RtABO的边有一个公共点,此时t=2;当t2,直到P运动到与AB相切时,由探究得:OP=3,t3,与RtABO的边有两个公共点,2t3如图6,当P运动到PM与OB重合时,与RtABO的边有两个公共点,此时t=2;直到P运动到点N与点O重合时,与RtABO的边有一个公共点,此时t=4;2t4,即:t的取值范围是2t3,2t4【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键19、(1)A类图书的标价为27元,B类图书的标价为18元;(2)当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本,利润最大.【解析】(1)先设B类图书的标价为x元,则由题意可知A类图书的标价为1.5x元,然后根据题意列出方程,求解即可 (2)先设购进A类图书t本,总利润为w元,则购进B类图书为(1000-t)本,根据题目中所给的信息列出不等式组,求出t的取值范围,然后根据总利润w=总售价-总成本,求出最佳的进货方案【详解】解:(1)设B类图书的标价为x元,则A类图书的标价为1.5x元,根据题意可得,化简得:540-10x=360,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,则A类图书的标价为:1.5x=1.5×18=27(元),答:A类图书的标价为27元,B类图书的标价为18元;(2)设购进A类图书t本,总利润为w元,A类图书的标价为(27-a)元(0a5),由题意得,解得:600t800,则总利润w=(27-a-18)t+(18-12)(1000-t)=(9-a)t+6(1000-t)=6000+(3-a)t,故当0a3时,3-a0,t=800时,总利润最大,且大于6000元;当a=3时,3-a=0,无论t值如何变化,总利润均为6000元;当3a5时,3-a0,t=600时,总利润最大,且小于6000元;答:当A类图书每本降价少于3元时,A类图书购进800本,B类图书购进200本时,利润最大;当A类图书每本降价大于等于3元,小于5元时,A类图书购进600本,B类图书购进400本时,利润最大【点睛】本题考查了一次函数的应用,分式方程的应用、一元一次不等式组的应用、一次函数的最值问题,解答本题的关键在于读懂题意,设出未知数,找出合适的等量关系,列出方程和不等式组求解20、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.【解析】(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案【详解】(1)根据题意得:(x20)(2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x20)(2x+1)=2(x30)2+200,a=2,抛物线开口向下,当x30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元当x=28时,W最大=2×(2830)2+200=192(元)销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键21、(1),k=2;(2)b=2或1【解析】(1)依据直线y=x与双曲线(k0)相交于点,即可得到a、k的值;(2)分两种情况:当直线x=b在点A的左侧时,由x=2,可得x=1,即b=1;当直线x=b在点A的右侧时,由x2,可得x=2,即b=2【详解】(1)直线y=x与双曲线(k0)相交于点,解得:k=2;(2)如图所示:当直线x=b在点A的左侧时,由x=2,可得:x=1,x=2(舍去),即b=1;当直线x=b在点A的右侧时,由x2,可得x=2,x=1(舍去),即b=2;综上所述:b=2或1【点睛】本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式22、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米【解析】(1)过点C作AB的垂线CD,垂足为D,在直角ACD中,解直角三角形求出CD,进而解答即可;(2)在直角CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程【详解】解:(1)过点C作AB的垂线CD,垂足为D,ABCD,sin30°=,BC=80千米,CD=BCsin30°=80×(千米),AC=(千米),AC+BC=80+4040×1.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)cos30°=,BC=80(千米),BD=BCcos30°=80×(千米),tan45°=,CD=40(千米),AD=(千米),AB=AD+BD=40+4040+40×1.73=109.2(千米),汽车从A地到B地比原来少走多少路程为:AC+BCAB=136.4109.2=27.2(千米)答:汽车从A地到B地比原来少走的路程为27.2千米【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线23、(1)是;(2)见解析;(3)150°【解析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS证明AECBED,得出AC=BD,由等距四边形的定义得出AD=AB=AC,证出AD=AB=BD,ABD是等边三角形,得出DAB=60°,由SSS证明AEDAEC,得出CAE=DAE=15°,求出DAC=CAE+DAE=30°,BAC=BAECAE=30°,由等腰三角形的性质和三角形内角和定理求出ACB和ACD的度数,即可得出答案【详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得: 在图3中,由勾股定理得: 故答案为 (3)解:连接BD如图1所示:ABE与CDE都是等腰直角三角形,DE=EC,AE=EB,DEC+BEC=AEB+BEC,即AEC=DEB,在AEC和BED中, ,AECBED(SAS),AC=BD,四边形ABCD是以A为等距点的等距四边形,AD=AB=AC,AD=AB=BD,ABD是等边三角形,DAB=60°,DAE=DABEAB=60°45°=15°,在AED和AEC中, AEDAEC(SSS),CAE=DAE=15°,DAC=CAE+DAE=30°,BAC=BAECAE=30°,AB=AC,AC=AD,BCD=ACB+ACD=75°+75°=150°【点睛】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键24、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为【解析】(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;(2)根据函数的特点得出a=m,-=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标【详解】解:(1)答案不唯一,如;(2)y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,即a=m,-=0,整理得m=a,n=-b,p=c,则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,函数y1+y2的顶点坐标为(0,2c)【点睛】本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键