欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022-2023学年云南省镇沅县第一中学高考冲刺押题(最后一卷)数学试卷含解析.doc

    • 资源ID:87796046       资源大小:2.73MB        全文页数:24页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022-2023学年云南省镇沅县第一中学高考冲刺押题(最后一卷)数学试卷含解析.doc

    2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若对,且,使得,则实数的取值范围是( )ABCD2设双曲线(a0,b0)的一个焦点为F(c,0)(c0),且离心率等于,若该双曲线的一条渐近线被圆x2+y22cx0截得的弦长为2,则该双曲线的标准方程为( )ABCD3关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )ABCD4已知函数,.若存在,使得成立,则的最大值为( )ABCD5设全集,集合,则集合( )ABCD6已知,则a,b,c的大小关系为( )ABCD7已知函数的图像上有且仅有四个不同的关于直线对称的点在的图像上,则的取值范围是( )ABCD8复数的共轭复数为( )ABCD9在三棱锥中,点到底面的距离为2,则三棱锥外接球的表面积为( )ABCD10如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为( )ABCD11如图所示的程序框图,当其运行结果为31时,则图中判断框处应填入的是( )ABCD12已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若展开式的二项式系数之和为64,则展开式各项系数和为_14如图梯形为直角梯形,图中阴影部分为曲线与直线围成的平面图形,向直角梯形内投入一质点,质点落入阴影部分的概率是_15已知函数,对于任意都有,则的值为_.16若x,y均为正数,且,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数,.(1)求函数的极值;(2)对任意,都有,求实数a的取值范围.18(12分)已知奇函数的定义域为,且当时,.(1)求函数的解析式;(2)记函数,若函数有3个零点,求实数的取值范围.19(12分)如图,在四棱锥中,底面为等腰梯形,为等腰直角三角形,平面底面,为的中点.(1)求证:平面;(2)若平面与平面的交线为,求二面角的正弦值.20(12分)设点,分别是椭圆的左、右焦点,为椭圆上任意一点,且的最小值为1(1)求椭圆的方程;(2)如图,动直线与椭圆有且仅有一个公共点,点,是直线上的两点,且,求四边形面积的最大值21(12分)已知函数有两个极值点,.(1)求实数的取值范围;(2)证明:.22(10分)已知函数.(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先求出的值域,再利用导数讨论函数在区间上的单调性,结合函数值域,由方程有两个根求参数范围即可.【详解】因为,故,当时,故在区间上单调递减;当时,故在区间上单调递增;当时,令,解得,故在区间单调递减,在区间上单调递增.又,且当趋近于零时,趋近于正无穷;对函数,当时,;根据题意,对,且,使得成立,只需,即可得,解得.故选:D.【点睛】本题考查利用导数研究由方程根的个数求参数范围的问题,涉及利用导数研究函数单调性以及函数值域的问题,属综合困难题.2、C【解析】由题得,又,联立解方程组即可得,进而得出双曲线方程.【详解】由题得 又该双曲线的一条渐近线方程为,且被圆x2+y22cx0截得的弦长为2,所以 又 由可得:,所以双曲线的标准方程为.故选:C【点睛】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.3、D【解析】由试验结果知对01之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值【详解】解:根据题意知,名同学取对都小于的正实数对,即,对应区域为边长为的正方形,其面积为,若两个正实数能与构成钝角三角形三边,则有,其面积;则有,解得故选:【点睛】本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.4、C【解析】由题意可知,由可得出,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,由于,则,同理可知,函数的定义域为,对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,则,则,构造函数,其中,则.当时,此时函数单调递增;当时,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.5、C【解析】集合, 点睛:本题是道易错题,看清所问问题求并集而不是交集.6、D【解析】与中间值1比较,可用换底公式化为同底数对数,再比较大小【详解】,又,即,故选:D.【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较7、D【解析】根据对称关系可将问题转化为与有且仅有四个不同的交点;利用导数研究的单调性从而得到的图象;由直线恒过定点,通过数形结合的方式可确定;利用过某一点曲线切线斜率的求解方法可求得和,进而得到结果.【详解】关于直线对称的直线方程为:原题等价于与有且仅有四个不同的交点由可知,直线恒过点当时,在上单调递减;在上单调递增由此可得图象如下图所示:其中、为过点的曲线的两条切线,切点分别为由图象可知,当时,与有且仅有四个不同的交点设,则,解得:设,则,解得:,则本题正确选项:【点睛】本题考查根据直线与曲线交点个数确定参数范围的问题;涉及到过某一点的曲线切线斜率的求解问题;解题关键是能够通过对称性将问题转化为直线与曲线交点个数的问题,通过确定直线恒过的定点,采用数形结合的方式来进行求解.8、D【解析】直接相乘,得,由共轭复数的性质即可得结果【详解】其共轭复数为.故选:D【点睛】熟悉复数的四则运算以及共轭复数的性质.9、C【解析】首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,为的中点由球的性质可知:平面,且设,在中,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为故选:.【点睛】本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.10、C【解析】利用正方体将三视图还原,观察可得最长棱为AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.11、C【解析】根据程序框图的运行,循环算出当时,结束运行,总结分析即可得出答案.【详解】由题可知,程序框图的运行结果为31,当时,;当时,;当时,;当时,;当时,.此时输出.故选:C.【点睛】本题考查根据程序框图的循环结构,已知输出结果求条件框,属于基础题.12、D【解析】由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】由题意得展开式的二项式系数之和求出的值,然后再计算展开式各项系数的和.【详解】由题意展开式的二项式系数之和为,即,故,令,则展开式各项系数的和为.故答案为:【点睛】本题考查了二项展开式的二项式系数和项的系数和问题,需要运用定义加以区分,并能够运用公式和赋值法求解结果,需要掌握解题方法.14、【解析】联立直线与抛物线方程求出交点坐标,再利用定积分求出阴影部分的面积,利用梯形的面积公式求出,最后根据几何概型的概率公式计算可得;【详解】解:联立解得或,即,故答案为:【点睛】本题考查几何概型的概率公式的应用以及利用微积分基本定理求曲边形的面积,属于中档题.15、【解析】由条件得到函数的对称性,从而得到结果【详解】ff,x是函数f(x)2sin(x)的一条对称轴f±2.【点睛】本题考查了正弦型三角函数的对称性,注意对称轴必过最高点或最低点,属于基础题.16、4【解析】由基本不等式可得,则,即可解得.【详解】方法一:,当且仅当时取等.方法二:因为,所以,所以,当且仅当时取等.故答案为:.【点睛】本题考查基本不等式在求最小值中的应用,考查学生对基本不等式的灵活使用,难度较易.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时, 无极值;当时, 极小值为;(2).【解析】(1)求导,对参数进行分类讨论,即可容易求得函数的极值;(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.【详解】(1)依题, 当时,函数在上单调递增,此时函数无极值; 当时,令,得,令,得所以函数在上单调递增,在上单调递减. 此时函数有极小值,且极小值为. 综上:当时,函数无极值;当时,函数有极小值,极小值为.(2)令易得且, 令所以,因为,从而,所以,在上单调递增. 又若,则所以在上单调递增,从而,所以时满足题意. 若,所以,在中,令,由(1)的单调性可知,有最小值,从而. 所以 所以,由零点存在性定理:,使且在上单调递减,在上单调递增. 所以当时,.故当,不成立.综上所述:的取值范围为.【点睛】本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.18、(1);(2)【解析】(1)根据奇函数定义,可知;令则,结合奇函数定义即可求得时的解析式,进而得函数的解析式;(2)根据零点定义,可得,由函数图像分析可知曲线与直线在第三象限必1个交点,因而需在第一象限有2个交点,将与联立,由判别式及两根之和大于0,即可求得的取值范围.【详解】(1)因为函数为奇函数,且,故;当时,则;故.(2)令,解得,画出函数关系如下图所示,要使曲线与直线有3个交点,则2个交点在第一象限,1个交点在第三象限,联立,化简可得,令,即, 解得,所以实数的取值范围为.【点睛】本题考查了根据函数奇偶性求解析式,分段函数图像画法,由函数零点个数求参数的取值范围应用,数形结合的应用,属于中档题.19、(1)证明见解析;(2)【解析】(1)取的中点,连接,易得,进而可证明四边形为平行四边形,即,从而可证明平面;(2)取中点,中点,连接,易证平面,平面,从而可知两两垂直,以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系,进而求出平面的法向量,及平面的法向量为,由,可求得平面与平面所成的二面角的正弦值.【详解】(1)证明:如图1,取的中点,连接.,且,四边形为平行四边形,.又平面,平面,平面.(2)如图2,取中点,中点,连接.,平面平面,平面平面,平面,平面,两两垂直.以点为坐标原点,向量的方向分别为轴正方向建立如图所示空间直角坐标系.由,可得,在等腰梯形中,易知,.则,设平面的法向量为,则,取,得.设平面的法向量为,则,取,得.因为,所以,所以平面与平面所成的二面角的正弦值为.【点睛】本题考查线面平行的证明,考查二面角的求法,利用空间向量法是解决本题的较好方法,属于中档题.20、(1);(2)2.【解析】(1)利用的最小值为1,可得,即可求椭圆的方程;(2)将直线的方程代入椭圆的方程中,得到关于的一元二次方程,由直线与椭圆仅有一个公共点知,即可得到,的关系式,利用点到直线的距离公式即可得到,当时,设直线的倾斜角为,则,即可得到四边形面积的表达式,利用基本不等式的性质,结合当时,四边形是矩形,即可得出的最大值【详解】(1)设,则,由题意得, 椭圆的方程为;  (2)将直线的方程代入椭圆的方程中,得                由直线与椭圆仅有一个公共点知,化简得:                          设, 当时,设直线的倾斜角为,则, ,当时,当时,四边形是矩形,   所以四边形面积的最大值为2【点睛】本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系、向量知识、二次函数的单调性、基本不等式的性质等基础知识,考查运算能力、推理论证以及分析问题、解决问题的能力,考查数形结合、化归与转化思想21、(1) (2)证明见解析【解析】(1)先求得导函数,根据两个极值点可知有两个不等实根,构造函数,求得;讨论和两种情况,即可确定零点的情况,即可由零点的情况确定的取值范围;(2)根据极值点定义可知,代入不等式化简变形后可知只需证明;构造函数,并求得,进而判断的单调区间,由题意可知,并设,构造函数,并求得,即可判断在内的单调性和最值,进而可得,即可由函数性质得,进而由单调性证明,即证明,从而证明原不等式成立.【详解】(1)函数则,因为存在两个极值点,所以有两个不等实根.设,所以.当时,所以在上单调递增,至多有一个零点,不符合题意.当时,令得,0减极小值增所以,即.又因为,所以在区间和上各有一个零点,符合题意,综上,实数的取值范围为.(2)证明:由题意知,所以,.要证明,只需证明,只需证明.因为,所以.设,则,所以在上是增函数,在上是减函数.因为,不妨设,设,则,当时,所以,所以在上是增函数,所以,所以,即.因为,所以,所以.因为,且在上是减函数,所以,即,所以原命题成立,得证.【点睛】本题考查了利用导数研究函数的极值点,由导数证明不等式,构造函数法的综合应用,极值点偏移证明不等式成立的应用,是高考的常考点和热点,属于难题.22、(1)或;(2)【解析】(1)使用零点分段法,讨论分段的取值范围,然后取它们的并集,可得结果.(2)利用等价转化的思想,可得不等式在恒成立,然后解出解集,根据集合间的包含关系,可得结果.【详解】(1)当时,原不等式可化为.当时,则,所以;当时,则,所以;当时,则,所以.综上所述:当时,不等式的解集为或.(2)由,则,由题可知:在恒成立,所以,即,即,所以故所求实数的取值范围是.【点睛】本题考查零点分段求解含绝对值不等式,熟练使用分类讨论的方法,以及知识的交叉应用,同时掌握等价转化的思想,属中档题.

    注意事项

    本文(2022-2023学年云南省镇沅县第一中学高考冲刺押题(最后一卷)数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开