2022-2023学年江苏省高淳区中考数学模试卷含解析.doc
-
资源ID:87796273
资源大小:1,022.50KB
全文页数:19页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年江苏省高淳区中考数学模试卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1明明和亮亮都在同一直道A、B两地间做匀速往返走锻炼明明的速度小于亮亮的速度忽略掉头等时间明明从A地出发,同时亮亮从B地出发图中的折线段表示从开始到第二次相遇止,两人之间的距离米与行走时间分的函数关系的图象,则A明明的速度是80米分B第二次相遇时距离B地800米C出发25分时两人第一次相遇D出发35分时两人相距2000米2如图,点A、B、C在圆O上,若OBC=40°,则A的度数为()A40°B45°C50°D55°3在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C的坐标为()A(,0)B(2,0)C(,0)D(3,0)4古希腊著名的毕达哥拉斯学派把1,3,6,10这样的数称为“三角形数”,而把1,4,9,16这样的数称为“正方形数”从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和下列等式中,符合这一规律的是()A133+10B259+16C3615+21D4918+315估计的值在 ( )A4和5之间B5和6之间C6和7之间D7和8之间6下列图形中,既是中心对称,又是轴对称的是()ABCD7下列命题中真命题是( )A若a2=b2,则a=b B4的平方根是±2C两个锐角之和一定是钝角 D相等的两个角是对顶角8据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为()A3.386×108B0.3386×109C33.86×107D3.386×1099一组数据8,3,8,6,7,8,7的众数和中位数分别是( )A8,6 B7,6 C7,8 D8,710关于的叙述正确的是()A=B在数轴上不存在表示的点C=±D与最接近的整数是311某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A18分,17分 B20分,17分 C20分,19分 D20分,20分12剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)13瑞士的一位中学教师巴尔末从光谱数据,中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门请你根据这个规律写出第9个数_14已知二次函数,与的部分对应值如下表所示:-10123461-2-3-2m下面有四个论断:抛物线的顶点为;关于的方程的解为;其中,正确的有_15从2,1,1,2四个数中,随机抽取两个数相乘,积为大于4小于2的概率是_16某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是_m17如图,AB是半圆O的直径,E是半圆上一点,且OEAB,点C为的中点,则A=_°.18如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数61012棱数912面数58观察上表中的结果,你能发现、之间有什么关系吗?请写出关系式.20(6分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得ABC45°,ACB30°,且BC20米(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)(2)求出路灯A离地面的高度AD(精确到0.1米)(参考数据:1.414,1.732)21(6分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1点P是AC上的一个动点,过点P作MNAC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上)设AP的长为x(0x4),AMN的面积为y建立模型:(1)y与x的函数关系式为:,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象请你补充列表,并在如图的坐标系中画出此函数的图象:x01134y0 0(3)观察所画的图象,写出该函数的两条性质: 22(8分)解方程组:23(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解根据调查统计结果,绘制了如图所示的不完整的三种统计图表对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n= ;(2)扇形统计图中,D部分扇形所对应的圆心角是 ;(3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平24(10分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P求作:过点P的直线m,使得ml小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE所以直线PE就是所求作的直线m老师说:“小东的作法是正确的”请回答:小东的作图依据是_25(10分)如图,在ABC中,AB=AC,以AB为直径的O分别交BC,AC于点D,E,DGAC于点G,交AB的延长线于点F(1)求证:直线FG是O的切线;(2)若AC=10,cosA=,求CG的长26(12分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整)请根据统计图中的信息解答下列问题:本次抽查的样本容量是 ;在扇形统计图中,“主动质疑”对应的圆心角为 度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?27(12分)先化简,再求值:,其中x1参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;A、当时,出现拐点,显然此时亮亮到达A地,利用速度路程时间可求出亮亮的速度及两人的速度和,二者做差后可得出明明的速度,进而得出A选项错误;B、根据第二次相遇时距离B地的距离明明的速度第二次相遇的时间、B两地间的距离,即可求出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离明明的速度出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误【详解】解:第一次相遇两人共走了2800米,第二次相遇两人共走了米,且二者速度不变,出发20分时两人第一次相遇,C选项错误;亮亮的速度为米分,两人的速度和为米分,明明的速度为米分,A选项错误;第二次相遇时距离B地距离为米,B选项正确;出发35分钟时两人间的距离为米,D选项错误故选:B【点睛】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键2、C【解析】根据等腰三角形的性质和三角形内角和定理求得BOC=100°,再利用圆周角定理得到A=BOC【详解】OB=OC,OBC=OCB又OBC=40°,OBC=OCB=40°,BOC=180°-2×40°=100°,A=BOC=50°故选:C【点睛】考查了圆周角定理在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半3、C【解析】过点B作BDx轴于点D,易证ACOBCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点【详解】解:过点B作BDx轴于点D,ACO+BCD90°,OAC+ACO90°,OACBCD,在ACO与BCD中, ACOBCD(AAS)OCBD,OACD,A(0,2),C(1,0)OD3,BD1,B(3,1),设反比例函数的解析式为y,将B(3,1)代入y,k3,y,把y2代入y,x,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,C也移动了个单位长度,此时点C的对应点C的坐标为(,0)故选:C【点睛】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型4、C【解析】本题考查探究、归纳的数学思想方法题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值【详解】A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和故选:C【点睛】此题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的5、C【解析】根据 ,可以估算出位于哪两个整数之间,从而可以解答本题【详解】解: 即故选:C【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法6、C【解析】根据中心对称图形,轴对称图形的定义进行判断【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形,轴对称图形的判断关键是根据图形自身的对称性进行判断7、B【解析】利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项【详解】A、若a2=b2,则a=±b,错误,是假命题;B、4的平方根是±2,正确,是真命题;C、两个锐角的和不一定是钝角,故错误,是假命题;D、相等的两个角不一定是对顶角,故错误,是假命题.故选B【点睛】考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大8、A【解析】科学记数法的表示形式为a×10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108故选:A【点睛】本题考查科学记数法表示较大的数9、D【解析】试题分析:根据中位数和众数的定义分别进行解答即可把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7考点:(1)众数;(2)中位数10、D【解析】根据二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算对各项依次分析,即可解答.【详解】选项A,+无法计算;选项B,在数轴上存在表示的点;选项C,;选项D,与最接近的整数是=1故选D【点睛】本题考查了二次根式的加法法则、实数与数轴上的点是一一对应的关系、二次根式的化简及无理数的估算等知识点,熟记这些知识点是解题的关键.11、D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D点睛:本题考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数12、D【解析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】分子的规律依次是:32,42,52,62,72,82,92,分母的规律是:规律是:5+7=12 12+9=21 21+11=32 32+13=45,即分子为(n+2)2,分母为n(n+4)【详解】解:由题可知规律,第9个数的分子是(9+2)2=121;第五个的分母是:32+13=45;第六个的分母是:45+15=60;第七个的分母是:60+17=77;第八个的分母是:77+19=96;则第九个的分母是:96+21=1因而第九个数是:故答案为:【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律14、【解析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数yax2+bx+c(a0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;抛物线yax2+bx+c(a0)的顶点为(2,-3),结论正确;b24ac0,结论错误,应该是b24ac>0;关于x的方程ax2+bx+c2的解为x11,x23,结论正确;m3,结论错误,其中,正确的有. 故答案为:【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.15、【解析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得【详解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,积为大于-4小于2的概率为=,故答案为:【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比16、1【解析】设抛物线的解析式为:y=ax2+b,由图得知点(0,2.4),(1,0)在抛物线上,列方程组得到抛物线的解析式为:y=x2+2.4,根据题意求出y=1.8时x的值,进而求出答案;【详解】设抛物线的解析式为:y=ax2+b,由图得知:点(0,2.4),(1,0)在抛物线上,解得:,抛物线的解析式为:y=x2+2.4,菜农的身高为1.8m,即y=1.8,则1.8=x2+2.4,解得:x=(负值舍去)故他在不弯腰的情况下,横向活动范围是:1米,故答案为117、22.5【解析】连接半径OC,先根据点C为的中点,得BOC=45°,再由同圆的半径相等和等腰三角形的性质得:A=ACO=×45°,可得结论【详解】连接OC,OEAB,EOB=90°,点C为的中点,BOC=45°,OA=OC,A=ACO=×45°=22.5°,故答案为:22.5°【点睛】本题考查了圆周角定理与等腰三角形的性质解题的关键是注意掌握数形结合思想的应用18、【解析】根据几何概率的求法:球落在黑色区域的概率就是黑色区域的面积与总面积的比值【详解】解:由图可知黑色区域与白色区域的面积相等,故球落在黑色区域的概率是=【点睛】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、8,15,18,6,7;【解析】分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n棱柱的关系,可知n棱柱一定有(n+1)个面,1n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系详解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681011棱数b9111518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数为n,则它有n个侧面,共有n+1个面,共有1n个顶点,共有3n条棱;故a,b,c之间的关系:a+c-b=1点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+1)个面,1n个顶点和3n条棱是解题关键20、(1)见解析;(2)是7.3米【解析】(1)图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则ADBC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则ADBC;(2)在ABD中,DB=AD;在ACD中,CD=AD,BC=BD+CD,由此可以建立关于AD的方程,解方程求解【详解】解:(1)如下图,图1,先以A为圆心,大于A到BC的距离为半径画弧交BC与EF两点,然后分别以E、F为圆心画弧,交点为G,连接AG,与BC交点点D,则ADBC;图2,分别以B、C为圆心,BA为半径画弧,交于点G,连接AG,与BC交点点D,则ADBC;(2)设ADx,在RtABD中,ABD45°,BDADx,CD20xtanACD,即tan30°,x10(1)7.3(米)答:路灯A离地面的高度AD约是7.3米【点睛】解此题关键是把实际问题转化为数学问题,把实际问题抽象到解直角三角形中,利用三角函数解答即可21、 (1) y=;(1)见解析;(3)见解析【解析】(1)根据线段相似的关系得出函数关系式(1)代入中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x当0x1时MNBDAPMAODMP=AC垂直平分MNPN=PM=xMN=xy=APMN=当1x4时,P在线段OC上,CP=4xCPMCODPM=MN=1PM=4xy=y=(1)由(1)当x=1时,y=当x=1时,y=1当x=3时,y=(3)根据(1)画出函数图象示意图可知1、当0x1时,y随x的增大而增大1、当1x4时,y随x的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.22、 【解析】设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可【详解】设=a, =b,则原方程组化为:,+得:4a=4,解得:a=1,把a=1代入得:1+b=3,解得:b=2,即,解得:,经检验是原方程组的解,所以原方程组的解是【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.23、 (1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平【解析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题【详解】解:(1)n%=110%15%35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数) P(偶数)故游戏规则不公平【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、内错角相等,两直线平行【解析】根据内错角相等,两直线平行即可判断【详解】EPA=CAP,ml(内错角相等,两直线平行)故答案为:内错角相等,两直线平行【点睛】本题考查了作图复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型25、(3)证明见试题解析;(3)3【解析】试题分析:(3)先得出ODAC,有ODG=DGC,再由DGAC,得到DGC=90°,ODG=90°,得出ODFG,即可得出直线FG是O的切线(3)先得出ODFAGF,再由cosA=,得出cosDOF=;然后求出OF、AF的值,即可求出AG、CG的值试题解析:(3)如图3,连接OD,AB=AC,C=ABC,OD=OB,ABC=ODB,ODB=C,ODAC,ODG=DGC,DGAC,DGC=90°,ODG=90°,ODFG,OD是O的半径,直线FG是O的切线;(3)如图3,AB=AC=30,AB是O的直径,OA=OD=30÷3=5,由(3),可得:ODFG,ODAC,ODF=90°,DOF=A,在ODF和AGF中,DOF=A,F=F,ODFAGF,cosA=,cosDOF=,OF=,AF=AO+OF=,解得AG=7,CG=ACAG=307=3,即CG的长是3考点:3切线的判定;3相似三角形的判定与性质;3综合题26、 (1)560;(2)54;(3)补图见解析;(4)18000人【解析】(1)本次调查的样本容量为224÷40%=560(人);(2)“主动质疑”所在的扇形的圆心角的度数是:360×84560=54º; (3)“讲解题目”的人数是:56084168224=84(人)(4)60000×=18000(人), 答:在课堂中能“独立思考”的学生约有18000人.27、解:原式=,【解析】试题分析:先将括号里面的通分后,将除法转换成乘法,约分化简然后代x的值,进行二次根式化简解:原式=当x1时,原式.