2022-2023学年姚安县中考适应性考试数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列运算正确的是()A B =3 Caa2=a2 D(2a3)2=4a62如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A8B9C10D113如图,在直角坐标系xOy中,若抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域(不包括直线y2和x轴),则l与直线y1交点的个数是()A0个B1个或2个C0个、1个或2个D只有1个4如图,向四个形状不同高同为h的水瓶中注水,注满为止如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()ABCD5运用乘法公式计算(3a)(a+3)的结果是()Aa26a+9Ba29C9a2Da23a+96由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A3B4C5D67提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A13.75×106 B13.75×105 C1.375×108 D1.375×1098小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()ABCD9某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是()年龄(岁)1213141516人数12252A2,14岁B2,15岁C19岁,20岁D15岁,15岁10下列计算正确的是()A(a2)3a6Ba2a3a6Ca3+a4a7D(ab)3ab3二、填空题(共7小题,每小题3分,满分21分)11关于的方程有增根,则_.12在平面直角坐标系xOy中,位于第一象限内的点A(1,2)在x轴上的正投影为点A,则cosAOA=_13某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分 那么,其中最喜欢足球的学生数占被调查总人数的百分比为_%14如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_15已知AD、BE是ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_16有一个正六面体,六个面上分别写有16这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是_17如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,摆第n层图需要_个三角形三、解答题(共7小题,满分69分)18(10分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同. (1)A,B两种型号的自行车的单价分别是多少? (2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.19(5分)如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF求证:C=90°;当BC=3,sinA=时,求AF的长20(8分)先化简:,然后在不等式的非负整数解中选择一个适当的数代入求值.21(10分)为了解朝阳社区岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图请根据图中信息解答下列问题:求参与问卷调查的总人数补全条形统计图该社区中岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数22(10分)(1)计算:()3×()34cos30°+;(2)解方程:x(x4)=2x823(12分)如图1,反比例函数(x0)的图象经过点A(,1),射线AB与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,BAC75°,ADy轴,垂足为D(1)求k的值;(2)求tanDAC的值及直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线lx轴,与AC相交于点N,连接CM,求CMN面积的最大值24(14分)如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度(精确到0.1米)(参考数据:sin10°0.17, cos10°0.98, tan10°0.18, 1.41, 1.73)参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】试题解析:A. 与不是同类二次根式,不能合并,故该选项错误; B.,故原选项错误;C. ,故原选项错误;D. ,故该选项正确.故选D.2、A【解析】分析:根据多边形的内角和公式及外角的特征计算详解:多边形的外角和是360°,根据题意得:110°(n-2)=3×360°解得n=1故选A点睛:本题主要考查了多边形内角和公式及外角的特征求多边形的边数,可以转化为方程的问题来解决3、C【解析】根据题意,利用分类讨论的数学思想可以得到l与直线y1交点的个数,从而可以解答本题【详解】抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域,开口向下,当顶点D位于直线y1下方时,则l与直线y1交点个数为0,当顶点D位于直线y1上时,则l与直线y1交点个数为1,当顶点D位于直线y1上方时,则l与直线y1交点个数为2,故选C【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答4、D【解析】根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,随着水的深度变高,需要的注水量也是均匀升高,水瓶的形状是圆柱,故选:D【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.5、C【解析】根据平方差公式计算可得【详解】解:(3a)(a+3)32a29a2,故选C【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;右边是相同项的平方减去相反项的平方6、B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数解答:解:从主视图看第一列两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列只有一行,说明俯视图中的右边一行只有一列,所以此几何体共有四个正方体故选B7、D【解析】用科学记数法表示较大的数时,一般形式为a×10n,其中1|a|<10,n为整数,据此判断即可【详解】13.75亿=1.375×109.故答案选D.【点睛】本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.8、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.9、D【解析】众数是一组数据中出现次数最多的数据,注意众数可以不只一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数【详解】解:数据1出现了5次,最多,故为众数为1;按大小排列第6和第7个数均是1,所以中位数是1故选D【点睛】本题主要考查了确定一组数据的中位数和众数的能力一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数10、A【解析】分析:根据幂的乘方、同底数幂的乘法、积的乘方公式即可得出答案详解:A、幂的乘方法则,底数不变,指数相乘,原式计算正确;B、同底数幂的乘法,底数不变,指数相加,原式=,故错误;C、不是同类项,无法进行加法计算;D、积的乘方等于乘方的积,原式=,计算错误;故选A点睛:本题主要考查的是幂的乘方、同底数幂的乘法、积的乘方计算法则,属于基础题型理解各种计算法则是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】根据分式方程10有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.12、【解析】依据点A(1,2)在x轴上的正投影为点A,即可得到A'O=1,AA'=2,AO=,进而得出cosAOA的值【详解】如图所示,点A(1,2)在x轴上的正投影为点A,A'O=1,AA'=2,AO=,cosAOA=,故答案为:【点睛】本题主要考查了平行投影以及平面直角坐标系,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律13、1%【解析】依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比【详解】被调查学生的总数为10÷20%=50人,最喜欢篮球的有50×32%=16人,则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%,故答案为:1【点睛】本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系14、20 cm【解析】将杯子侧面展开,建立A关于EF的对称点A,根据两点之间线段最短可知AB的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A,连接AB,则AB即为最短距离根据勾股定理,得(cm)故答案为:20cm.【点睛】本题考查了平面展开-最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键同时也考查了同学们的创造性思维能力15、4【解析】由三角形的重心的概念和性质,由AD、BE为ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.故答案为4.点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍16、 【解析】投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,其概率是=【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=17、n2n+1【解析】观察可得,第1层三角形的个数为1,第2层三角形的个数为3,比第1层多2个;第3层三角形的个数为7,比第2层多4个;可得,每一层比上一层多的个数依次为2,4,6,据此作答【详解】观察可得,第1层三角形的个数为1,第2层三角形的个数为222+1=3,第3层三角形的个数为323+1=7,第四层图需要424+1=13个三角形摆第五层图需要525+1=21.那么摆第n层图需要n2n+1个三角形。故答案为:n2n+1.【点睛】本题考查了规律型:图形的变化类,解题的关键是由图形得到一般规律.三、解答题(共7小题,满分69分)18、(1)A型自行车的单价为210元,B型自行车的单价为240元.(2) 最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.【解析】分析:(1)设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题(2)设购买A型自行车a辆,B型自行车的(600-a)辆总费用为w元构建一次函数,利用一次函数的性质即可解决问题详解:(1)设A型自行车的单价为x元,B型自行车的单价为y元, 由题意, 解得, 型自行车的单价为210元,B型自行车的单价为240元. (2)设购买A型自行车a辆,B型自行车的辆.总费用为w元. 由题意, , 随a的增大而减小, , , 当时,w有最小值,最小值, 最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.点睛:本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是学会设未知数,构建方程组或一次函数解决实际问题,属于中考常考题型19、(1)见解析(2)【解析】(1)连接OE,BE,因为DE=EF,所以=,从而易证OEB=DBE,所以OEBC,从可证明BCAC;(2)设O的半径为r,则AO=5r,在RtAOE中,sinA=从而可求出r的值【详解】解:(1)连接OE,BE,DE=EF,=OBE=DBEOE=OB,OEB=OBEOEB=DBE,OEBCO与边AC相切于点E,OEACBCACC=90°(2)在ABC,C=90°,BC=3,sinA=,AB=5,设O的半径为r,则AO=5r,在RtAOE中,sinA= 【点睛】本题考查圆的综合问题,涉及平行线的判定与性质,锐角三角函数,解方程等知识,综合程度较高,需要学生灵活运用所学知识20、;2.【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.21、(1)参与问卷调查的总人数为500人;(2)补全条形统计图见解析;(3)这些人中最喜欢微信支付方式的人数约为2800人【解析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(4160岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例-15,即可求出喜欢现金支付的人数(4160岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论【详解】(1)(人答:参与问卷调查的总人数为500人(2)(人补全条形统计图,如图所示(3)(人答:这些人中最喜欢微信支付方式的人数约为2800人【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(4160岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数22、(1)3;(1)x1=4,x1=1【解析】(1)根据有理数的混合运算法则计算即可;(1)先移项,再提取公因式求解即可.【详解】解:(1)原式=8×()4×+1=8×1+1=3;(1)移项得:x(x4)1(x4)=0,(x4)(x1)=0,x4=0,x1=0,x1=4,x1=1【点睛】本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.23、(1);(2),;(3)【解析】试题分析:(1)根据反比例函数图象上点的坐标特征易得k=2;(2)作BHAD于H,如图1,根据反比例函数图象上点的坐标特征确定B点坐标为(1,2),则AH=21,BH=21,可判断ABH为等腰直角三角形,所以BAH=45°,得到DAC=BACBAH=30°,根据特殊角的三角函数值得tanDAC=;由于ADy轴,则OD=1,AD=2,然后在RtOAD中利用正切的定义可计算出CD=2,易得C点坐标为(0,1),于是可根据待定系数法求出直线AC的解析式为y=x1;(3)利用M点在反比例函数图象上,可设M点坐标为(t,)(0t2),由于直线lx轴,与AC相交于点N,得到N点的横坐标为t,利用一次函数图象上点的坐标特征得到N点坐标为(t, t1),则MN=t+1,根据三角形面积公式得到SCMN=t(t+1),再进行配方得到S=(t)2+(0t2),最后根据二次函数的最值问题求解试题解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BHAD于H,如图1,把B(1,a)代入反比例函数解析式y=,得a=2,B点坐标为(1,2),AH=21,BH=21,ABH为等腰直角三角形,BAH=45°,BAC=75°,DAC=BACBAH=30°,tanDAC=tan30°=;ADy轴,OD=1,AD=2,tanDAC=,CD=2,OC=1,C点坐标为(0,1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,1)代入得 ,解得 ,直线AC的解析式为y=x1;(3)设M点坐标为(t,)(0t2),直线lx轴,与AC相交于点N,N点的横坐标为t,N点坐标为(t, t1),MN=(t1)=t+1,SCMN=t(t+1)=t2+t+=(t)2+(0t2),a=0,当t=时,S有最大值,最大值为24、30.3米【解析】试题分析:过点D作DEAB于点E,在RtADE中,求出AE的长,在RtDEB中,求出BE的长即可得.试题解析:过点D作DEAB于点E,在RtADE中,AED=90°,tan1=, 1=30°,AE=DE× tan1=40×tan30°=40×40×1.73×23.1 在RtDEB中,DEB=90°,tan2=, 2=10°,BE=DE× tan2=40×tan10°40×0.18=7.2 AB=AE+BE23.1+7.2=30.3米