2022-2023学年广东省广州市增城区四校联考高三第二次联考数学试卷含解析.doc
-
资源ID:87796608
资源大小:1.65MB
全文页数:17页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年广东省广州市增城区四校联考高三第二次联考数学试卷含解析.doc
2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 若数列满足且,则使的的值为( )ABCD2已知数列是公比为的正项等比数列,若、满足,则的最小值为( )ABCD3已知定义在上的函数的周期为4,当时,则( )ABCD4已知函数是奇函数,则的值为( )A10B9C7D15已知复数满足(其中为的共轭复数),则的值为( )A1B2CD6设,则"是""的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7已知函数,若,则的取值范围是( )ABCD8已知实数,满足约束条件,则目标函数的最小值为ABCD9一个几何体的三视图如图所示,则这个几何体的体积为( ) ABCD10已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为( )ABCD11木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积( ) ABCD12已知等差数列满足,公差,且成等比数列,则A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13已知抛物线,点为抛物线上一动点,过点作圆的切线,切点分别为,则线段长度的取值范围为_.14若展开式中的常数项为240,则实数的值为_.15(5分)已知,且,则的值是_16已知集合,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知正数x,y,z满足x+y+z=t(t为常数),且的最小值为,求实数t的值.18(12分)已知椭圆的离心率为,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于两点,是否存在实数k使得以线段为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.19(12分)如图,在矩形中,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.()求证:平面平面;()求直线与平面所成角的正弦值.20(12分)在中,角、所对的边分别为、,角、的度数成等差数列,.(1)若,求的值;(2)求的最大值.21(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.22(10分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点. 若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C2、B【解析】利用等比数列的通项公式和指数幂的运算法则、指数函数的单调性求得再根据此范围求的最小值【详解】数列是公比为的正项等比数列,、满足,由等比数列的通项公式得,即,可得,且、都是正整数,求的最小值即求在,且、都是正整数范围下求最小值和的最小值,讨论、取值.当且时,的最小值为.故选:B【点睛】本题考查等比数列的通项公式和指数幂的运算法则、指数函数性质等基础知识,考查数学运算求解能力和分类讨论思想,是中等题3、A【解析】因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.4、B【解析】根据分段函数表达式,先求得的值,然后结合的奇偶性,求得的值.【详解】因为函数是奇函数,所以,.故选:B【点睛】本题主要考查分段函数的解析式、分段函数求函数值,考查数形结合思想.意在考查学生的运算能力,分析问题、解决问题的能力.5、D【解析】按照复数的运算法则先求出,再写出,进而求出.【详解】,.故选:D【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.6、A【解析】根据题意得到充分性,验证得出不必要,得到答案.【详解】,当时,充分性;当,取,验证成立,故不必要.故选:.【点睛】本题考查了充分不必要条件,意在考查学生的计算能力和推断能力.7、B【解析】对分类讨论,代入解析式求出,解不等式,即可求解.【详解】函数,由得或解得.故选:B.【点睛】本题考查利用分段函数性质解不等式,属于基础题.8、B【解析】作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时故选B【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键9、B【解析】还原几何体可知原几何体为半个圆柱和一个四棱锥组成的组合体,分别求解两个部分的体积,加和得到结果.【详解】由三视图还原可知,原几何体下半部分为半个圆柱,上半部分为一个四棱锥半个圆柱体积为:四棱锥体积为:原几何体体积为:本题正确选项:【点睛】本题考查三视图的还原、组合体体积的求解问题,关键在于能够准确还原几何体,从而分别求解各部分的体积.10、B【解析】由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,所以,的渐近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.11、C【解析】由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.12、D【解析】先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】连接,易得,可得四边形的面积为,从而可得,进而求出的取值范围,可求得的范围.【详解】如图,连接,易得,所以四边形的面积为,且四边形的面积为三角形面积的两倍,所以,所以,当最小时,最小,设点,则,所以当时,则,当点的横坐标时,此时,因为随着的增大而增大,所以的取值范围为.故答案为:.【点睛】本题考查直线与圆的位置关系的应用,考查抛物线上的动点到定点的距离的求法,考查学生的计算求解能力,属于中档题.14、3【解析】依题意可得二项式展开式的常数项为即可得到方程,解得即可;【详解】解:二项式的展开式中的常数项为,解得.故答案为:【点睛】本题考查二项式展开式中常数项的计算,属于基础题.15、【解析】由于,且,则,得,则16、【解析】由集合和集合求出交集即可.【详解】解:集合,.故答案为:.【点睛】本题考查了交集及其运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、t1【解析】把变形为结合基本不等式进行求解.【详解】因为即,当且仅当,时,上述等号成立,所以,即,又x,y,z0,所以x+y+z=t1【点睛】本题主要考查基本不等式的应用,利用基本不等式求解最值时要注意转化为适用形式,同时要关注不等号是否成立,侧重考查数学运算的核心素养.18、(1);(2)存在,当时,以线段为直径的圆恰好经过坐标原点O.【解析】(1)设椭圆的焦半距为,利用离心率为,椭圆的长轴长为1列出方程组求解,推出,即可得到椭圆的方程(2)存在实数使得以线段为直径的圆恰好经过坐标原点设点,将直线的方程代入,化简,利用韦达定理,结合向量的数量积为0,转化为:求解即可【详解】解:(1)设椭圆的焦半距为c,则由题设,得,解得,所以,故所求椭圆C的方程为(2)存在实数k使得以线段为直径的圆恰好经过坐标原点O.理由如下:设点,将直线的方程代入,并整理,得.(*)则,因为以线段为直径的圆恰好经过坐标原点O,所以,即.又,于是,解得, 经检验知:此时(*)式的,符合题意.所以当时,以线段为直径的圆恰好经过坐标原点O【点睛】本题考查椭圆方程的求法,椭圆的简单性质,直线与椭圆位置关系的综合应用,考查计算能力以及转化思想的应用,属于中档题.19、()详见解析;().【解析】()根据,可得平面,故而平面平面()过作于,则可证平面,故为所求角,在中利用余弦定理计算,再计算【详解】解:()因为,平面,平面所以平面,又平面,所以平面平面;()过作于,则由平面,且平面知,所以平面,从而是直线与平面所成角.因为, 所以,从而.【点睛】本题考查了面面垂直的判定,考查直线与平面所成角的计算,属于中档题20、 (1);(2)【解析】(1) 由角的度数成等差数列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2) 由正弦定理,得.由,得.所以当,即时,.【方法点睛】解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:统一成角进行判断,常用正弦定理及三角恒等变换;统一成边进行判断,常用余弦定理、面积公式等21、(1),(2)侧面积取得最大值时,等腰三角形的腰的长度为【解析】试题分析:(1)由条件,所以S,;(2)令,所以得,通过求导分析,得在时取得极大值,也是最大值试题解析:(1)设交于点,过作,垂足为, 在中,在中,所以S,(2)要使侧面积最大,由(1)得: 令,所以得,由得:当时,当时,所以在区间上单调递增,在区间上单调递减,所以在时取得极大值,也是最大值;所以当时,侧面积取得最大值, 此时等腰三角形的腰长答:侧面积取得最大值时,等腰三角形的腰的长度为22、(1)(2)定值为0.【解析】(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1)因为直线过椭圆的右焦点,所以,因为离心率为,所以,(2),设直线,则因此由得,所以,因此即【点睛】本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.