2022-2023学年上海市实验校中考联考数学试卷含解析.doc
-
资源ID:87796658
资源大小:761KB
全文页数:16页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年上海市实验校中考联考数学试卷含解析.doc
2023年中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC4,ABC的周长为23,则ABD的周长为()A13B15C17D192下列二次根式中,最简二次根式的是()ABCD3实数a,b在数轴上的位置如图所示,以下说法正确的是( )Aa+b=0BbaCab0D|b|a|4如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=x+6于B、C两点,若函数y=(x0)的图象ABC的边有公共点,则k的取值范围是()A5k20B8k20C5k8D9k205已知x+=3,则x2+=()A7B9C11D86一个多边形的每个内角均为120°,则这个多边形是( )A四边形B五边形C六边形D七边形7已知点 A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k0)的图象上,若x1x20x3,则y1,y2,y3的大小关系是()Ay1y2y3 By2y1y3 Cy3y2y1 Dy3y1y28如图,反比例函数y的图象与直线yx的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则ABC的面积为( )A8 B6 C4 D29如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=20°,那么EFC的度数为()A115°B120°C125°D130°10下列现象,能说明“线动成面”的是()A天空划过一道流星B汽车雨刷在挡风玻璃上刷出的痕迹C抛出一块小石子,石子在空中飞行的路线D旋转一扇门,门在空中运动的痕迹二、填空题(共7小题,每小题3分,满分21分)11如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .12对于函数,我们定义(m、n为常数)例如,则已知:若方程有两个相等实数根,则m的值为_13关于x的方程(m5)x23x1=0有两个实数根,则m满足_14如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口)那么,蚂蚁从A出发到达E处的概率是_15如图,已知ABC和ADE均为等边三角形,点OAC的中点,点D在A射线BO上,连接OE,EC,若AB4,则OE的最小值为_16圆柱的底面半径为1,母线长为2,则它的侧面积为_(结果保留)17已知a+ 3,则的值是_三、解答题(共7小题,满分69分)18(10分)如图,在直角坐标系中ABC的A、B、C三点坐标A(7,1)、B(8,2)、C(9,0)(1)请在图中画出ABC的一个以点P(12,0)为位似中心,相似比为3的位似图形ABC(要求与ABC同在P点一侧),画出ABC关于y轴对称的A'B'C';(2)写出点A'的坐标19(5分)已知,关于x的方程x2+2x-k=0有两个不相等的实数根(1)求k的取值范围;(2)若x1,x2是这个方程的两个实数根,求的值;(3)根据(2)的结果你能得出什么结论?20(8分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把BAD沿直线BD折叠,点A的对应点为A(1)若点A落在矩形的对角线OB上时,OA的长= ;(2)若点A落在边AB的垂直平分线上时,求点D的坐标;(3)若点A落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可)21(10分)如图,在平面直角坐标系xOy中,一次函数yx与反比例函数的图象相交于点.(1)求a、k的值;(2)直线xb()分别与一次函数yx、反比例函数的图象相交于点M、N,当MN2时,画出示意图并直接写出b的值.22(10分)A,B两地相距20km甲、乙两人都由A地去B地,甲骑自行车,平均速度为10km/h;乙乘汽车,平均速度为40km/h,且比甲晚1.5h出发设甲的骑行时间为x(h)(0x2)(1)根据题意,填写下表:时间x(h)与A地的距离0.51.8 _甲与A地的距离(km)5 20乙与A地的距离(km)012 (2)设甲,乙两人与A地的距离为y1(km)和y2(km),写出y1,y2关于x的函数解析式;(3)设甲,乙两人之间的距离为y,当y=12时,求x的值23(12分)先化简,再求值,其中x=124(14分)某市飞翔航模小队,计划购进一批无人机已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍设购进A型无人机x台,总费用为y元求y与x的关系式;购进A型、B型无人机各多少台,才能使总费用最少?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】DE垂直平分AC,AD=CD,AC=2EC=8,CABC=AC+BC+AB=23,AB+BC=23-8=15,CABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.2、C【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D=,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C考点:最简二次根式3、D【解析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|a|【详解】A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确. 选D.4、A【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故.故选A.5、A【解析】根据完全平方公式即可求出答案【详解】(x+)2=x2+2+9=2+x2+,x2+=7,故选A【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.6、C【解析】由题意得,180°(n-2)=120°,解得n=6.故选C.7、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1x20x3,y3y1y2;故选D.考点:反比例函数的性质.8、A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则ABC的面积=2|k|=2×4=1故选A考点:反比例函数系数k的几何意义9、C【解析】分析:由已知条件易得AEB=70°,由此可得DEB=110°,结合折叠的性质可得DEF=55°,则由ADBC可得EFC=125°,再由折叠的性质即可得到EFC=125°.详解:在ABE中,A=90°,ABE=20°,AEB=70°,DEB=180°-70°=110°,点D沿EF折叠后与点B重合,DEF=BEF=DEB=55°,在矩形ABCD中,ADBC,DEF+EFC=180°,EFC=180°-55°=125°,由折叠的性质可得EFC=EFC=125°.故选C.点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.10、B【解析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:A、天空划过一道流星说明“点动成线”,故本选项错误.B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,故本选项正确.C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,故本选项错误.D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体.二、填空题(共7小题,每小题3分,满分21分)11、36或4.【解析】(3)当BD=BC时,过B点作GHAD,则BGE=90°,当BC=BD时,AG=DH=DC=8,由AE=3,AB=36,得BE=3由翻折的性质,得BE=BE=3,EG=AGAE=83=5,BG=33,BH=GHBG=3633=4,DB=;(3)当DB=CD时,则DB=36(易知点F在BC上且不与点C、B重合);(3)当CB=CD时,EB=EB,CB=CB,点E、C在BB的垂直平分线上,EC垂直平分BB,由折叠可知点F与点C重合,不符合题意,舍去综上所述,DB的长为36或故答案为36或考点:3翻折变换(折叠问题);3分类讨论12、 【解析】分析:根据题目中所给定义先求,再利用根与系数关系求m值.详解:由所给定义知,,若=0,解得m=.点睛:一元二次方程的根的判别式是,=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.>0说明方程有两个不同实数解,=0说明方程有两个相等实数解,<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.13、m且m1【解析】根据一元二次方程的定义和判别式的意义得到m10且 然后求出两个不等式的公共部分即可【详解】解:根据题意得m10且解得且m1故答案为: 且m1【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a0)的根与=b24ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根14、【解析】试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.考点:概率.15、1【解析】根据等边三角形的性质可得OCAC,ABD30°,根据“SAS”可证ABDACE,可得ACE30°ABD,当OEEC时,OE的长度最小,根据直角三角形的性质可求OE的最小值【详解】解:ABC的等边三角形,点O是AC的中点,OCAC,ABD30°ABC和ADE均为等边三角形,ABAC,ADAE,BACDAE60°,BADCAE,且ABAC,ADAE,ABDACE(SAS)ACE30°ABD当OEEC时,OE的长度最小,OEC90°,ACE30°OE最小值OCAB1,故答案为1【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,熟练运用全等三角形的判定是本题的关键16、4 【解析】根据圆柱的侧面积公式,计算即可【详解】圆柱的底面半径为r=1,母线长为l=2,则它的侧面积为S侧=2rl=2×1×2=4故答案为:4【点睛】题考查了圆柱的侧面积公式应用问题,是基础题17、7【解析】根据完全平方公式可得:原式=三、解答题(共7小题,满分69分)18、(1)见解析;(2)点A'的坐标为(-3,3)【解析】解:(1),A'B'C'如图所示(2)点A'的坐标为(-3,3).19、(1)k-1;(2)2;(3)k-1时,的值与k无关【解析】(1)由题意得该方程的根的判别式大于零,列出不等式解答即可.(2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.(3)结合(1)和(2)结论可见,k-1时,的值为定值2,与k无关【详解】(1)方程有两个不等实根,0,即4+4k0,k-1 (2)由根与系数关系可知x1+x2=-2 ,x1x2=-k, (3)由(1)可知,k-1时,的值与k无关【点睛】本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键.20、(1)1;(2)点D(82,0);(3)点D的坐标为(31,0)或(31,0)【解析】分析:()由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA=1,据此可得答案; ()连接AA,利用折叠的性质和中垂线的性质证BAA是等边三角形,可得ABD=ABD=30°,据此知AD=ABtanABD=2,继而可得答案; ()分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得详解:()如图1,由题意知OA=8、AB=1,OB=10,由折叠知,BA=BA=1,OA=1 故答案为1; ()如图2,连接AA点A落在线段AB的中垂线上,BA=AA BDA是由BDA折叠得到的,BDABDA,ABD=ABD,AB=AB,AB=AB=AA,BAA是等边三角形,ABA=10°,ABD=ABD=30°,AD=ABtanABD=1tan30°=2,OD=OAAD=82,点D(82,0); ()如图3,当点D在OA上时 由旋转知BDABDA,BA=BA=1,BAD=BAD=90° 点A在线段OA的中垂线上,BM=AN=OA=4,AM=2,AN=MNAM=ABAM=12,由BMA=AND=BAD=90°知BMAAND,则=,即=,解得:DN=35,则OD=ON+DN=4+35=31,D(31,0); 如图4,当点D在AO延长线上时,过点A作x轴的平行线交y轴于点M,延长AB交所作直线于点N, 则BN=CM,MN=BC=OA=8,由旋转知BDABDA,BA=BA=1,BAD=BAD=90° 点A在线段OA的中垂线上,AM=AN=MN=4,则MC=BN=2,MO=MC+OC=2+1,由EMA=ANB=BAD=90°知EMAANB,则=,即=,解得:ME=,则OE=MOME=1+ DOE=AME=90°、OED=MEA,DOEAME,=,即=,解得:DO=3+1,则点D的坐标为(31,0) 综上,点D的坐标为(31,0)或(31,0)点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点21、(1),k=2;(2)b=2或1【解析】(1)依据直线y=x与双曲线(k0)相交于点,即可得到a、k的值;(2)分两种情况:当直线x=b在点A的左侧时,由x=2,可得x=1,即b=1;当直线x=b在点A的右侧时,由x2,可得x=2,即b=2【详解】(1)直线y=x与双曲线(k0)相交于点,解得:k=2;(2)如图所示:当直线x=b在点A的左侧时,由x=2,可得:x=1,x=2(舍去),即b=1;当直线x=b在点A的右侧时,由x2,可得x=2,x=1(舍去),即b=2;综上所述:b=2或1【点睛】本题考查了利用待定系数法求函数解析式以及函数的图象与解析式的关系,解题时注意:点在图象上,就一定满足函数的解析式22、(1)18,2,20(2)(3)当y=12时,x的值是1.2或1.6【解析】()根据路程、时间、速度三者间的关系通过计算即可求得相应答案;()根据路程=速度×时间结合甲、乙的速度以及时间范围即可求得答案;()根据题意,得,然后分别将y=12代入即可求得答案.【详解】()由题意知:甲、乙二人平均速度分别是平均速度为10km/h和40km/h,且比甲晚1.5h出发,当时间x=1.8 时,甲离开A的距离是10×1.8=18(km),当甲离开A的距离20km时,甲的行驶时间是20÷10=2(时),此时乙行驶的时间是21.5=0. 5(时),所以乙离开A的距离是40×0.5=20(km),故填写下表:()由题意知:y1=10x(0x1.5),y2=;()根据题意,得,当0x1.5时,由10x=12,得x=1.2,当1.5x2时,由30x+60=12,得x=1.6,因此,当y=12时,x的值是1.2或1.6.【点睛】本题考查了一次函数的应用,理清题意,弄清各数量间的关系是解题的关键.23、1【解析】先根据分式的运算法则进行化简,再代入求值.【详解】解:原式=()×=×=;将x=1代入原式=1【点睛】分式的化简求值24、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;(2)y200x+50000;购进A型、B型无人机各16台、34台时,才能使总费用最少【解析】(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到y与x的函数关系式;根据中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少【详解】解:(1)设一台型无人机售价元,一台型无人机的售价元, ,解得,答:一台型无人机售价元,一台型无人机的售价元;(2)由题意可得,即y与x的函数关系式为;B型无人机的数量不少于A型无人机的数量的2倍,解得,当时,y取得最小值,此时,答:购进型、型无人机各台、台时,才能使总费用最少【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答