欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022-2023学年内蒙古自治区阿拉善盟高三下学期第六次检测数学试卷含解析.doc

    • 资源ID:87796690       资源大小:1.92MB        全文页数:20页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022-2023学年内蒙古自治区阿拉善盟高三下学期第六次检测数学试卷含解析.doc

    2023年高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合,则集合( )ABCD2三棱锥的各个顶点都在求的表面上,且是等边三角形,底面,若点在线段上,且,则过点的平面截球所得截面的最小面积为( )ABCD3已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限4点为的三条中线的交点,且,则的值为( )ABCD5甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A甲B乙C丙D丁6在复平面内,复数z=i对应的点为Z,将向量绕原点O按逆时针方向旋转,所得向量对应的复数是( )ABCD7下图所示函数图象经过何种变换可以得到的图象( )A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位8大衍数列,米源于我国古代文献乾坤谱中对易传“大衍之数五十”的推论,主要用于解释我国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.已知该数列前10项是0,2,4,8,12,18,24,32,40,50,则大衍数列中奇数项的通项公式为( )ABCD9已知,若实数,满足不等式组,则目标函数( )A有最大值,无最小值B有最大值,有最小值C无最大值,有最小值D无最大值,无最小值10已知复数是纯虚数,其中是实数,则等于( )ABCD11已知函数,则下列判断错误的是( )A的最小正周期为B的值域为C的图象关于直线对称D的图象关于点对称12已知底面为正方形的四棱锥,其一条侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中常数项是_.14公比为正数的等比数列的前项和为,若,则的值为_15已知函数,则过原点且与曲线相切的直线方程为_.16某校高三年级共有名学生参加了数学测验(满分分),已知这名学生的数学成绩均不低于分,将这名学生的数学成绩分组如下:,得到的频率分布直方图如图所示,则下列说法中正确的是_(填序号);这名学生中数学成绩在分以下的人数为;这名学生数学成绩的中位数约为;这名学生数学成绩的平均数为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A 级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B 级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C 级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D 级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.求10件手工艺品中不能外销的手工艺品最有可能是多少件;记1件手工艺品的利润为X元,求X的分布列与期望.18(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.19(12分)已知不等式对于任意的恒成立.(1)求实数m的取值范围;(2)若m的最大值为M,且正实数a,b,c满足.求证.20(12分)已知函数,.(1)若不等式对恒成立,求的最小值;(2)证明:.(3)设方程的实根为.令若存在,使得,证明:.21(12分)设函数.(1)若恒成立,求整数的最大值;(2)求证:.22(10分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取值范围;(2)当时,对任意的恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】弄清集合B的含义,它的元素x来自于集合A,且也是集合A的元素.【详解】因,所以,故,又, ,则,故集合.故选:D.【点睛】本题考查集合的定义,涉及到解绝对值不等式,是一道基础题.2、A【解析】由题意画出图形,求出三棱锥S-ABC的外接球的半径,再求出外接球球心到D的距离,利用勾股定理求得过点D的平面截球O所得截面圆的最小半径,则答案可求.【详解】如图,设三角形ABC外接圆的圆心为G,则外接圆半径AG=,设三棱锥S-ABC的外接球的球心为O,则外接球的半径R=取SA中点E,由SA=4,AD=3SD,得DE=1,所以OD=.则过点D的平面截球O所得截面圆的最小半径为所以过点D的平面截球O所得截面的最小面积为故选:A【点睛】本题考查三棱锥的外接球问题,还考查了求截面的最小面积,属于较难题.3、D【解析】设,整理得到方程组,解方程组即可解决问题【详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点为,此点位于第四象限.故选D【点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题4、B【解析】可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出【详解】如图:点为的三条中线的交点,由可得:,又因,.故选:B【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.5、C【解析】分别假设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.6、A【解析】由复数z求得点Z的坐标,得到向量的坐标,逆时针旋转,得到向量的坐标,则对应的复数可求.【详解】解:复数z=i(i为虚数单位)在复平面中对应点Z(0,1),(0,1),将绕原点O逆时针旋转得到,设(a,b),则,即,又,解得:,对应复数为.故选:A.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.7、D【解析】根据函数图像得到函数的一个解析式为,再根据平移法则得到答案.【详解】设函数解析式为,根据图像:,故,即,取,得到,函数向右平移个单位得到.故选:.【点睛】本题考查了根据函数图像求函数解析式,三角函数平移,意在考查学生对于三角函数知识的综合应用.8、B【解析】直接代入检验,排除其中三个即可【详解】由题意,排除D,排除A,C同时B也满足,故选:B【点睛】本题考查由数列的项选择通项公式,解题时可代入检验,利用排除法求解9、B【解析】判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况.【详解】由,所以可得.,所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值.故选:B【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.10、A【解析】对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】 因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.11、D【解析】先将函数化为,再由三角函数的性质,逐项判断,即可得出结果.【详解】可得对于A,的最小正周期为,故A正确;对于B,由,可得,故B正确;对于C,正弦函数对称轴可得:解得:,当,故C正确;对于D,正弦函数对称中心的横坐标为:解得:若图象关于点对称,则解得:,故D错误;故选:D.【点睛】本题考查三角恒等变换,三角函数的性质,熟记三角函数基本公式和基本性质,考查了分析能力和计算能力,属于基础题.12、C【解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图二、填空题:本题共4小题,每小题5分,共20分。13、-160【解析】试题分析:常数项为.考点:二项展开式系数问题.14、56【解析】根据已知条件求等比数列的首项和公比,再代入等比数列的通项公式,即可得到答案.【详解】,.故答案为:.【点睛】本题考查等比数列的通项公式和前项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.15、【解析】设切点坐标为,利用导数求出曲线在切点的切线方程,将原点代入切线方程,求出的值,于此可得出所求的切线方程【详解】设切点坐标为,则曲线在点处的切线方程为,由于该直线过原点,则,得,因此,则过原点且与曲线相切的直线方程为,故答案为【点睛】本题考查导数的几何意义,考查过点作函数图象的切线方程,求解思路是:(1)先设切点坐标,并利用导数求出切线方程;(2)将所过点的坐标代入切线方程,求出参数的值,可得出切点的坐标;(3)将参数的值代入切线方程,可得出切线的方程16、【解析】由频率分布直方图可知,解得,故不正确;这名学生中数学成绩在分以下的人数为,故正确;设这名学生数学成绩的中位数为,则,解得,故正确;这名学生数学成绩的平均数为,故不正确综上,说法正确的序号是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)2 期望值为X900600300100P【解析】(1)一件手工艺品质量为B级的概率为.(2)由题意可得一件手工艺品质量为D 级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,则,则,.由得,所以当时,即,由得,所以当时,所以当时,最大,即10件手工艺品中不能外销的手工艺品最有可能是2件. 由上可得一件手工艺品质量为A 级的概率为,一件手工艺品质量为B级的概率为,一件手工艺品质量为C 级的概率为,一件手工艺品质量为D 级的概率为,所以X的分布列为X900600300100P则期望为.18、(1)(2)【解析】(1)由基本量法,求出公比后可得通项公式;(2)求出,用裂项相消法求和【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和解题方法是基本量法基本量法是解决等差数列和等比数列的基本方法,务必掌握19、(1)(2)证明见解析【解析】(1)法一:,得,则,由此可得答案;法二:由题意,令,易知是偶函数,且时为增函数,由此可得出答案;(2)由(1)知,即,结合“1”的代换,利用基本不等式即可证明结论【详解】解:(1)法一:(当且仅当时取等号),又(当且仅当时取等号),所以(当且仅当时取等号),由題意得,则,解得,故的取值范围是;法二:因为对于任意恒有成立,即,令,易知是偶函数,且时为增函数,所以,即,则,解得,故的取值范围是;(2)由(1)知,即,故不等式成立【点睛】本题主要考查绝对值不等式的恒成立问题,考查基本不等式的应用,属于中档题20、(1)(2)证明见解析(3)证明见解析【解析】(1)由题意可得,令,利用导数得在上单调递减,进而可得结论;(2)不等式转化为,令,利用导数得单调性即可得到答案;(3)由题意可得,进而可将不等式转化为,再利用单调性可得,记,再利用导数研究单调性可得在上单调递增,即,即,即可得到结论.【详解】(1),即,化简可得.令,因为,所以,.所以,在上单调递减,.所以的最小值为.(2)要证,即.两边同除以可得.设,则.在上,所以在上单调递减.在上,所以在上单调递增,所以.设,因为在上是减函数,所以.所以,即.(3)证明:方程在区间上的实根为,即,要证,由可知,即要证.当时,因而在上单调递增.当时,因而在上单调递减.因为,所以,要证.即要证.记,.因为,所以,则.设,当时,.时,故.且,故,因为,所以.因此,即在上单调递增.所以,即.故得证.【点睛】本题考查函数的单调性、最值、函数恒成立问题,考查导数的应用,转化思想,构造函数研究单调性,属于难题.21、(1)整数的最大值为;(2)见解析.【解析】(1)将不等式变形为,构造函数,利用导数研究函数的单调性并确定其最值,从而得到正整数的最大值;(2)根据(1)的结论得到,利用不等式的基本性质可证得结论.【详解】(1)由得,令,令,对恒成立,所以,函数在上单调递增,故存在使得,即,从而当时,有,所以,函数在上单调递增;当时,有,所以,函数在上单调递减.所以,因此,整数的最大值为;(2)由(1)知恒成立,令则,上述等式全部相加得,所以,因此,【点睛】本题考查导数在函数单调性、最值中的应用,以及放缩法证明不等式的技巧,属于难题22、(1);(2)【解析】(1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解;(2)将问题转化为对一切恒成立,令,求导,研究单调性,求出其最值即可得结果.【详解】(1)有两个零点关于的方程有两个相异实根由,知有两个零点有两个相异实根.令,则,由得:,由得:,在单调递增,在单调递减,又当时,当时,当时,有两个零点时,实数的取值范围为;(2)当时,原命题等价于对一切恒成立对一切恒成立.令 令,则在上单增又,使即当时,当时,即在递减,在递增,由知 函数在单调递增即,实数的取值范围为.【点睛】本题考查利用导数研究函数的单调性,极值,最值问题,考查学生转化能力和分析能力,是一道难度较大的题目.

    注意事项

    本文(2022-2023学年内蒙古自治区阿拉善盟高三下学期第六次检测数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开