欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022-2023学年广东省广州市培正中学高三第二次调研数学试卷含解析.doc

    • 资源ID:87796976       资源大小:1.41MB        全文页数:17页
    • 资源格式: DOC        下载积分:25金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要25金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022-2023学年广东省广州市培正中学高三第二次调研数学试卷含解析.doc

    2023年高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,且关于的方程有且只有一个实数根,则实数的取值范围( )ABCD2已知向量,若,则( )ABCD3若不等式对于一切恒成立,则的最小值是 ( )A0BCD4已知角的终边经过点P(),则sin()=ABCD5设全集U=R,集合,则( )Ax|-1 <x<4Bx|-4<x<1Cx|-1x4Dx|-4x16在复平面内,复数(,)对应向量(O为坐标原点),设,以射线Ox为始边,OZ为终边旋转的角为,则,法国数学家棣莫弗发现了棣莫弗定理:,则,由棣莫弗定理可以导出复数乘方公式:,已知,则( )AB4CD167已知直线过圆的圆心,则的最小值为( )A1B2C3D48某几何体的三视图如图所示,则此几何体的体积为( )AB1CD9在复平面内,复数(为虚数单位)对应的点位于( )A第一象限B第二象限C第三象限D第四象限10已知函数,若方程恰有三个不相等的实根,则的取值范围为( )ABCD11小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:0012:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( )ABCD12中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知二面角l为60°,在其内部取点A,在半平面,内分别取点B,C若点A到棱l的距离为1,则ABC的周长的最小值为_14若向量满足,则实数的取值范围是_.15已知函数,则_;满足的的取值范围为_.16某地区教育主管部门为了对该地区模拟考试成绩进行分析,随机抽取了150分到450分之间的1 000名学生的成绩,并根据这1 000名学生的成绩画出样本的频率分布直方图(如图),则成绩在250,400)内的学生共有_人三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)中的内角,的对边分别是,若,.(1)求;(2)若,点为边上一点,且,求的面积.18(12分)如图,四棱锥的底面ABCD是正方形,为等边三角形,M,N分别是AB,AD的中点,且平面平面ABCD.(1)证明:平面PNB;(2)问棱PA上是否存在一点E,使平面DEM,求的值19(12分)已知函数.(1)若函数,求的极值;(2)证明:. (参考数据: )20(12分)已知椭圆,左、右焦点为,点为上任意一点,若的最大值为3,最小值为1.(1)求椭圆的方程;(2)动直线过点与交于两点,在轴上是否存在定点,使成立,说明理由.21(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.方案一:每满100元减20元;方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款7折8折9折原价(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;(2)若某顾客购物金额为180元,选择哪种方案更划算?22(10分)某商场举行有奖促销活动,顾客购买每满元的商品即可抽奖一次.抽奖规则如下:抽奖者掷各面标有点数的正方体骰子次,若掷得点数大于,则可继续在抽奖箱中抽奖;否则获得三等奖,结束抽奖,已知抽奖箱中装有个红球与个白球,抽奖者从箱中任意摸出个球,若个球均为红球,则获得一等奖,若个球为个红球和个白球,则获得二等奖,否则,获得三等奖(抽奖箱中的所有小球,除颜色外均相同).若,求顾客参加一次抽奖活动获得三等奖的概率;若一等奖可获奖金元,二等奖可获奖金元,三等奖可获奖金元,记顾客一次抽奖所获得的奖金为,若商场希望的数学期望不超过元,求的最小值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据条件可知方程有且只有一个实根等价于函数的图象与直线只有一个交点,作出图象,数形结合即可【详解】解:因为条件等价于函数的图象与直线只有一个交点,作出图象如图,由图可知,故选:B【点睛】本题主要考查函数图象与方程零点之间的关系,数形结合是关键,属于基础题2、A【解析】利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,解得.故选A.【点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.3、C【解析】试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论解:不等式x2+ax+10对一切x(0,成立,等价于a-x-对于一切成立,y=-x-在区间上是增函数a-a的最小值为-故答案为C考点:不等式的应用点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题4、A【解析】由题意可得三角函数的定义可知:,则:本题选择A选项.5、C【解析】解一元二次不等式求得集合,由此求得【详解】由,解得或.因为或,所以.故选:C【点睛】本小题主要考查一元二次不等式的解法,考查集合补集的概念和运算,属于基础题.6、D【解析】根据复数乘方公式:,直接求解即可.【详解】, .故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.7、D【解析】圆心坐标为,代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值【详解】圆的圆心为,由题意可得,即,则,当且仅当且即时取等号,故选:【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题8、C【解析】该几何体为三棱锥,其直观图如图所示,体积故选.9、C【解析】化简复数为、的形式,可以确定对应的点位于的象限【详解】解:复数故复数对应的坐标为位于第三象限故选:【点睛】本题考查复数代数形式的运算,复数和复平面内点的对应关系,属于基础题10、B【解析】由题意可将方程转化为,令,进而将方程转化为,即或,再利用的单调性与最值即可得到结论.【详解】由题意知方程在上恰有三个不相等的实根,即,.因为,式两边同除以,得.所以方程有三个不等的正实根.记,则上述方程转化为.即,所以或.因为,当时,所以在,上单调递增,且时,.当时,在上单调递减,且时,.所以当时,取最大值,当,有一根.所以恰有两个不相等的实根,所以.故选:B.【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.11、C【解析】设出两人到达小王的时间,根据题意列出不等式组,利用几何概型计算公式进行求解即可.【详解】设小王和外卖小哥到达小王所居住的楼下的时间分别为,以12:00点为开始算起,则有,在平面直角坐标系内,如图所示:图中阴影部分表示该不等式组的所表示的平面区域,所以小王在楼下等候外卖小哥的时间不超过5分钟的概率为:.故选:C【点睛】本题考查了几何概型中的面积型公式,考查了不等式组表示的平面区域,考查了数学运算能力.12、A【解析】详解:由题意知,题干中所给的是榫头,是凸出的几何体,求得是卯眼的俯视图,卯眼是凹进去的,即俯视图中应有一不可见的长方形,且俯视图应为对称图形故俯视图为故选A.点睛:本题主要考查空间几何体的三视图,考查学生的空间想象能力,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】作A关于平面和的对称点M,N,交和与D,E,连接MN,AM,AN,DE,根据对称性三角形ADC的周长为AB+AC+BCMB+BC+CN,当四点共线时长度最短,结合对称性和余弦定理求解.【详解】作A关于平面和的对称点M,N,交和与D,E,连接MN,AM,AN,DE,根据对称性三角形ABC的周长为AB+AC+BCMB+BC+CN,当M,B,C,N共线时,周长最小为MN设平面ADE交l于,O,连接OD,OE,显然ODl,OEl,DOE60°,MOA+AON240°,OA1,MON120°,且OMONOA1,根据余弦定理,故MN21+12×1×1×cos120°3,故MN故答案为:【点睛】此题考查求空间三角形边长的最值,关键在于根据几何性质找出对称关系,结合解三角形知识求解.14、【解析】根据题意计算,解得答案.【详解】,故,解得.故答案为:.【点睛】本题考查了向量的数量积,意在考查学生的计算能力.15、 【解析】首先由分段函数的解析式代入求值即可得到,分和两种情况讨论可得;【详解】解:因为,所以,当时,满足题意,;当时,由,解得.综合可知:满足的的取值范围为.故答案为:;.【点睛】本题考查分段函数的性质的应用,分类讨论思想,属于基础题.16、750【解析】因为,得,所以。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)10【解析】(1)由二倍角的正弦公式以及正弦定理,可得,再根据二倍角的余弦公式计算即可;(2)由已知可得,利用余弦定理解出,由已知计算出与,再根据三角形的面积公式求出结果即可.【详解】(1),在中,由正弦定理得,又,(2),由余弦定理得,则,化简得,解得或(负值舍去),的面积.【点睛】本题考查了三角形面积公式以及正弦定理、余弦定理的应用,考查了二倍角公式的应用,考查了运算能力,属于基础题.18、(1)证明见解析;(2)存在,.【解析】(1)根据题意证出,再由线面垂直的判定定理即可证出.(2)连接AC交DM于点Q,连接EQ,利用线面平行的性质定理可得,从而可得,在正方形ABCD中,由即可求解.【详解】(1)证明:在正方形ABCD中,M,N分别是AB,AD的中点,.又,.为等边三角形,N是AD的中点,.又平面平面ABCD,平面PAD,平面平面,平面ABCD.又平面ABCD,.平面PNB,平面PNB.(2)解:存在.如图,连接AC交DM于点Q,连接EQ.平面DEM,平面PAC,平面平面,.在正方形ABCD中,且.,.故.所以棱PA上存在点E,使平面DEM,此时,E是棱A的靠近点A的三等分点.【点睛】本题考查了线面垂直的判定定理、线面平行的性质定理,考查了学生的推理能力以及空间想象能力,属于空间几何中的基础题.19、(1)见解析;(1)见证明【解析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;(1)问题转化为证exx1xlnx10,根据xlnxx(x1),问题转化为只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),根据函数的单调性证明即可【详解】(1),当,当,在上递增,在上递减,在取得极大值,极大值为,无极大值.(1)要证f(x)+1exx1即证exx1xlnx10,先证明lnxx1,取h(x)lnxx+1,则h(x),易知h(x)在(0,1)递增,在(1,+)递减,故h(x)h(1)0,即lnxx1,当且仅当x1时取“”,故xlnxx(x1),exx1xlnxex1x1+x1,故只需证明当x0时,ex1x1+x10恒成立,令k(x)ex1x1+x1,(x0),则k(x)ex4x+1,令F(x)k(x),则F(x)ex4,令F(x)0,解得:x1ln1,F(x)递增,故x(0,1ln1时,F(x)0,F(x)递减,即k(x)递减,x(1ln1,+)时,F(x)0,F(x)递增,即k(x)递增,且k(1ln1)58ln10,k(0)10,k(1)e18+10,由零点存在定理,可知x1(0,1ln1),x1(1ln1,1),使得k(x1)k(x1)0,故0xx1或xx1时,k(x)0,k(x)递增,当x1xx1时,k(x)0,k(x)递减,故k(x)的最小值是k(0)0或k(x1),由k(x1)0,得4x11,k(x1)1+x11(x11)(1x11),x1(1ln1,1),k(x1)0,故x0时,k(x)0,原不等式成立【点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及不等式的证明,考查转化思想,属于中档题20、(1)(2)存在;详见解析【解析】(1)由椭圆的性质得,解得后可得,从而得椭圆方程;(2)设,当直线斜率存在时,设为,代入椭圆方程,整理后应用韦达定理得,代入0由恒成立问题可求得验证斜率不存在时也适合即得【详解】解:(1)由题易知解得,所以椭圆方程为(2)设当直线斜率存在时,设为与椭圆方程联立得,显然所以因为化简解得即所以此时存在定点满足题意当直线斜率不存在时,显然也满足综上所述,存在定点,使成立【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题中的定点问题,解题方法是设而不求的思想方法设而不求思想方法是直线与圆锥曲线相交问题中常用方法,只要涉及交点坐标,一般就用此法21、(1)(2)选择方案二更为划算【解析】(1)计算顾客获得7折优惠的概率,获得8折优惠的概率,相加得到答案.(2)选择方案二,记付款金额为元,则可取的值为126,144,162,180.,计算概率得到数学期望,比较大小得到答案.【详解】(1)该顾客获得7折优惠的概率,该顾客获得8折优惠的概率,故该顾客获得7折或8折优惠的概率.(2)若选择方案一,则付款金额为.若选择方案二,记付款金额为元,则可取的值为126,144,162,180.,则.因为,所以选择方案二更为划算.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.22、;.【解析】设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,求出;由题意可知,随机变量的可能取值为,相应求出概率,求出期望,化简得,由题意可知,即,求出的最小值.【详解】设顾客获得三等奖为事件,因为顾客掷得点数大于的概率为,顾客掷得点数小于,然后抽将得三等奖的概率为,所以;由题意可知,随机变量的可能取值为, 且,所以随机变量的数学期望,化简得,由题意可知,即,化简得,因为,解得,即的最小值为.【点睛】本题主要考查概率和期望的求法,属于常考题.

    注意事项

    本文(2022-2023学年广东省广州市培正中学高三第二次调研数学试卷含解析.doc)为本站会员(茅****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开