2022-2023学年湖北省宜昌市夷陵区研训中心中考数学模拟试题含解析.doc
2023年中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1化简:(a+)(1)的结果等于()Aa2Ba+2CD2实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()AacbcB|ab|abCacbcDbc3如图,在ABC中,C90°,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MNAB,MC6,NC,则四边形MABN的面积是( )ABCD4如图是抛物线y=ax2+bx+c(a0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:abc0;2a+b=0;方程ax2+bx+c=4有两个相等的实数根;抛物线与x轴的另一个交点是(2.0);x(ax+b)a+b,其中正确结论的个数是()A4个B3个C2个D1个5a、b互为相反数,则下列成立的是()Aab=1Ba+b=0Ca=bD=-16把不等式组的解集表示在数轴上,下列选项正确的是()ABCD7在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是ABCD8已知二次函数yax2+bx+c(a0)的图象如图所示,则下列结论: abc0; 2ab0; b24ac0; 9a+3b+c0; c+8a0.正确的结论有().A1个B2个C3个D4个9如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )ABCD10某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是()A38B39C40D42二、填空题(本大题共6个小题,每小题3分,共18分)11二十四节气列入联合国教科文组织人类非物质文化遗产代表作名录太阳运行的轨道是一个圆形,古人将之称作“黄道”,并把黄道分为24份,每15度就是一个节气,统称“二十四节气”这一时间认知体系被誉为“中国的第五大发明”如图,指针落在惊蛰、春分、清明区域的概率是_12如图,M的半径为2,圆心M(3,4),点P是M上的任意一点,PAPB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_13如图,在ABC中,AB=AC,tanACB=2,D在ABC内部,且AD=CD,ADC=90°,连接BD,若BCD的面积为10,则AD的长为_14已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_.15数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若SEBMF=1,则SFGDN=_16在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的四边形,ABCD,CDBC于C,且AB、BC、CD边长分别为2,4,3,则原直角三角形纸片的斜边长是_.三、解答题(共8题,共72分)17(8分)如图,抛物线经过点A(2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果PBO=BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DEx轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.18(8分)小雁塔位于唐长安城安仁坊(今陕西省西安市南郊)荐福寺内,又称“荐福寺塔”,建于唐景龙年间,与大雁塔同为唐长安城保留至今的重要标志小明在学习了锐角三角函数后,想利用所学知识测量“小雁塔”的高度,小明在一栋高9.982米的建筑物底部D处测得塔顶端A的仰角为45°,接着在建筑物顶端C处测得塔顶端A的仰角为37.5°已知ABBD,CDBD,请你根据题中提供的相关信息,求出“小雁塔”的高AB的长度(结果精确到1米)(参考数据:sin37.5°0.61,cos37.5°0.79,tan37.5°0.77)19(8分)如图,矩形摆放在平面直角坐标系中,点在轴上,点在轴上,.(1)求直线的表达式;(2)若直线与矩形有公共点,求的取值范围;(3)直线与矩形没有公共点,直接写出的取值范围.20(8分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?21(8分)如图,在中,,点是上一点尺规作图:作,使与、都相切(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:22(10分)已知关于x的一元二次方程为常数求证:不论m为何值,该方程总有两个不相等的实数根;若该方程一个根为5,求m的值23(12分)某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?24从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图)请回答以下问题:(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度(2)利用样本估计该校初三学生选择“中技”观点的人数(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答)参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】解:原式=故选B考点:分式的混合运算2、A【解析】根据数轴上点的位置确定出a,b,c的范围,判断即可【详解】由数轴上点的位置得:ab0c,acbc,|ab|ba,bc,acbc.故选A【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键3、C【解析】连接CD,交MN于E,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MNCD,且CE=DECD=2CEMNAB,CDABCMNCAB在CMN中,C=90°,MC=6,NC=,故选C4、B【解析】通过图象得到、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.【详解】由图象可知,抛物线开口向下,则,抛物线的顶点坐标是,抛物线对称轴为直线,则错误,正确;方程的解,可以看做直线与抛物线的交点的横坐标,由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,则方程有两个相等的实数根,正确;由抛物线对称性,抛物线与轴的另一个交点是,则错误;不等式可以化为,抛物线顶点为,当时,故正确.故选:.【点睛】本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.5、B【解析】依据相反数的概念及性质即可得【详解】因为a、b互为相反数,所以a+b=1,故选B【点睛】此题主要考查相反数的概念及性质相反数的定义:只有符号不同的两个数互为相反数,1的相反数是16、C【解析】求得不等式组的解集为x1,所以C是正确的【详解】解:不等式组的解集为x1故选C【点睛】本题考查了不等式问题,在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示7、A【解析】由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可【详解】解:由题意得,由勾股定理得,故选:A【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边8、C【解析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线开口向下,得:a0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b0;抛物线交y轴于正半轴,得:c0.abc0, 正确;2a+b=0,正确;由图知:抛物线与x轴有两个不同的交点,则=b2-4ac0,故错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y= 9a+3b+c=0,故错误;观察图象得当x=-2时,y0,即4a-2b+c0b=-2a,4a+4a+c0即8a+c0,故正确.正确的结论有,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用9、B【解析】根据左视图的定义,从左侧会发现两个正方形摞在一起.【详解】从左边看上下各一个小正方形,如图故选B10、B【解析】根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数【详解】解:由于共有6个数据,所以中位数为第3、4个数的平均数,即中位数为=39,故选:B【点睛】本题主要考查了中位数要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】首先由图可得此转盘被平分成了24等份,其中惊蛰、春分、清明区域有3份,然后利用概率公式求解即可求得答案【详解】如图,此转盘被平分成了24等份,其中惊蛰、春分、清明有3份,指针落在惊蛰、春分、清明的概率是:故答案为【点睛】此题考查了概率公式的应用注意概率所求情况数与总情况数之比12、6【解析】点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当O与M外切时,AB最小,根据条件求出AO即可求解;【详解】解:点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当O与M外切时,AB最小,M的半径为2,圆心M(3,4),PM5,OA3,AB6,故答案为6;【点睛】本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键13、5 【解析】作辅助线,构建全等三角形和高线DH,设CMa,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明ADGCDH(AAS),可得DGDHMG作辅助线,构建全等三角形和高线DH,设CMa,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明ADGCDH(AAS),可得DGDHMG,AGCHa,根据AMAGMG,列方程可得结论,AGCHa,根据AMAGMG,列方程可得结论【详解】解:过D作DHBC于H,过A作AMBC于M,过D作DGAM于G,设CMa,ABAC,BC2CM2a,tanACB2,2,AM2a,由勾股定理得:ACa,SBDCBCDH10,2aDH10,DH,DHMHMGMGD90°,四边形DHMG为矩形,HDG90°HDCCDG,DGHM,DHMG,ADC90°ADGCDG,ADGCDH,在ADG和CDH中,ADGCDH(AAS),DGDHMG,AGCHa,AMAGMG,即2aa,a220,在RtADC中,AD2CD2AC2,ADCD,2AD25a2100,AD5或5(舍),故答案为5【点睛】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AGCH是解决问题的关键,并利用方程的思想解决问题14、(1,4).【解析】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.15、1【解析】根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得SEBMF=SFGDN,得SFGDN.【详解】SEBMF=SFGDN,SEBMF=1,SFGDN=1.【点睛】本题考查面积的求解,解题的关键是读懂题意.16、4或1【解析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长【详解】如图:因为AC=2,点A是斜边EF的中点,所以EF=2AC=4,如图:因为BD=5,点D是斜边EF的中点,所以EF=2BD=1,综上所述,原直角三角形纸片的斜边长是4或1,故答案是:4或1【点睛】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解三、解答题(共8题,共72分)17、(1);(2)P(1,); (3)3或5.【解析】(1)将点A、B代入抛物线,用待定系数法求出解析式.(2)对称轴为直线x=1,过点P作PGy轴,垂足为G, 由PBO=BAO,得tanPBO=tanBAO,即,可求出P的坐标.(3)新抛物线的表达式为,由题意可得DE=2,过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.【详解】解:(1)抛物线经过点A(2,0),点B(0,4),解得,抛物线解析式为,(2),对称轴为直线x=1,过点P作PGy轴,垂足为G,PBO=BAO,tanPBO=tanBAO,,,,,P(1,),(3)设新抛物线的表达式为则,,DE=2过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.点D在y轴的正半轴上,则,,,m=3,点D在y轴的负半轴上,则,,,m=5,综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.18、43米【解析】作CEAB于E,则四边形BDCE是矩形,BE=CD=9.982米,设AB=x根据tanACE=,列出方程即可解决问题【详解】解:如图,作CEAB于E则四边形BDCE是矩形,BE=CD=9.982米,设AB=x在RtABD中,ADB=45°,AB=BD=x,在RtAEC中,tanACE=tan37.5°0.77,=0.77,解得x43,答:“小雁塔”的高AB的长度约为43米【点睛】本题考查解直角三角形的应用-仰角俯角问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用构建方程的思想思考问题19、(1);(2);(3)【解析】(1)由条件可求得A、C的坐标,利用待定系数法可求得直线AC的表达式;(2)结合图形,当直线平移到过C、A时与矩形有一个公共点,则可求得b的取值范围;(3)由题意可知直线l过(0,10),结合图象可知当直线过B点时与矩形有一个公共点,结合图象可求得k的取值范围【详解】解:(1) ,设直线表达式为,,解得直线表达式为;(2) 直线可以看到是由直线平移得到,当直线过时,直线与矩形有一个公共点,如图1, 当过点时,代入可得,解得.当过点时,可得直线与矩形有公共点时,的取值范围为;(3) ,直线过,且,如图2,直线绕点旋转,当直线过点时,与矩形有一个公共点,逆时针旋转到与轴重合时与矩形有公共点,当过点时,代入可得,解得直线:与矩形没有公共点时的取值范围为【点睛】本题为一次函数的综合应用,涉及待定系数法、直线的平移、旋转及数形结合思想等知识在(1)中利用待定系数法是解题的关键,在(2)、(3)中确定出直线与矩形OABC有一个公共点的位置是解题的关键本题考查知识点较多,综合性较强,难度适中20、(1)补图见解析;(2)27°;(3)1800名【解析】(1)根据A类的人数是10,所占的百分比是25%即可求得总人数,然后根据百分比的意义求得B类的人数;(2)用360°乘以对应的比例即可求解;(3)用总人数乘以对应的百分比即可求解【详解】(1)抽取的总人数是:10÷25%=40(人),在B类的人数是:40×30%=12(人).;(2)扇形统计图扇形D的圆心角的度数是:360×=27°;(3)能在1.5小时内完成家庭作业的人数是:2000×(25%+30%+35%)=1800(人).考点:条形统计图、扇形统计图21、(1)详见解析;(2)详见解析.【解析】(1)利用角平分线的性质作出BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案(2)根据切线的性质,圆周角的性质,由相似判定可证CDBDEB,再根据相似三角形的性质即可求解【详解】解:(1)如图,及为所求(2)连接是的切线,即,是直径,又【点睛】本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键22、(1)详见解析;(2)的值为3或1【解析】(1)将原方程整理成一般形式,令即可求解,(2)将x=1代入,求得m的值,再重新解方程即可.【详解】证明:原方程可化为,不论m为何值,该方程总有两个不相等的实数根解:将代入原方程,得:,解得:,的值为3或1【点睛】本题考查了参数对一元二次方程根的影响.中等难度关键是将根据不同情况讨论参数的取值范围.23、(1)LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)1 350元.【解析】1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+1,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题【详解】(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个根据题意,得解得答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个(2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元则购进普通白炽灯泡(120a)个根据题意得W=(6045)a+(3025)(120a)=10a+110a+145a+25(120a)×30%,解得a75,k=100,W随a的增大而增大,a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(12075)=45个答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元【点睛】本题考查了二元一次方程组和一次函数的应用,根据实际问题找到等量关系列方程组和建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题是解题的关键.24、(4)A高中观点4 446;(4)456人;(4)【解析】试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;(4)800×44%=456(人),估计该校初三学生选择“中技”观点的人数约是456人;(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,列表如下:共有44种等可能的结果数,其中出现4女的情况共有4种所以恰好选到4位女同学的概率=考点:4列表法与树状图法;4用样本估计总体;4扇形统计图