2022-2023学年广东省惠州市惠阳区中考三模数学试题含解析.doc
-
资源ID:87797376
资源大小:1.26MB
全文页数:22页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年广东省惠州市惠阳区中考三模数学试题含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,已知矩形ABCD中,BC2AB,点E在BC边上,连接DE、AE,若EA平分BED,则的值为()ABCD2已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )ABCD3下列实数为无理数的是 ( )A-5BC0D4下列手机手势解锁图案中,是轴对称图形的是( )ABCD5山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有()ABCD6截至2010年“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为29,28,29,31,31,31,29,31,则由年龄组成的这组数据的中位数是()A28B29C30D317如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A8BC4D8已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )ABCD9下列事件中为必然事件的是( )A打开电视机,正在播放茂名新闻B早晨的太阳从东方升起C随机掷一枚硬币,落地后正面朝上D下雨后,天空出现彩虹10实数a在数轴上的位置如图所示,则化简后为()A7B7C2a15D无法确定二、填空题(本大题共6个小题,每小题3分,共18分)11观察下列图形,若第1个图形中阴影部分的面积为1,第2个图形中阴影部分的面积为,第3个图形中阴影部分的面积为,第4个图形中阴影部分的面积为,则第n个图形中阴影部分的面积为_.(用字母n表示)12若方程 x2+(m21)x+1+m0的两根互为相反数,则 m_13在正方形中,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,则和之间的关系是_(用含的代数式表示)14如图,四边形ABCD内接于O,BD是O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=5,则O的半径为_15已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示(1)乙比甲晚出发_小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是_16如图,某数学兴趣小组为了测量河对岸l1的两棵古树A、B之间的距离,他们在河这边沿着与AB平行的直线l2上取C、D两点,测得ACB=15°,ACD=45°,若l1、l2之间的距离为50m,则古树A、B之间的距离为_m三、解答题(共8题,共72分)17(8分)小张同学尝试运用课堂上学到的方法,自主研究函数y=的图象与性质下面是小张同学在研究过程中遇到的几个问题,现由你来完成:(1)函数y=自变量的取值范围是 ;(2)下表列出了y与x的几组对应值:x2m12y1441表中m的值是 ;(3)如图,在平面直角坐标系xOy中,描出以表中各组对应值为坐标的点,试由描出的点画出该函数的图象;(4)结合函数y=的图象,写出这个函数的性质: (只需写一个)18(8分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且)(1)当时,在图1中依题意画出图形,并求(用含的式子表示);探究线段,之间的数量关系,并加以证明;(2)当时,直接写出线段,之间的数量关系19(8分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x90)天的售价与销售量的相关信息如下表:时间x(天)1x5050x90售价(元/件)x4090每天销量(件)2002x已知该商品的进价为每件30元,设销售该商品的每天利润为y元求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.20(8分)如图,在中,,于, .求的长;.求 的长. 21(8分)如图,在ABC中,AB=AC,以AB为直径的O分别交BC,AC于点D,E,DGAC于点G,交AB的延长线于点F(1)求证:直线FG是O的切线;(2)若AC=10,cosA=,求CG的长22(10分)如图,在平面直角坐标系xOy中,直线yx+b与双曲线y相交于A,B两点,已知A(2,5)求:b和k的值;OAB的面积23(12分)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由24计算:(1)22sin45°+(2018)0+|参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】过点A作AFDE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可【详解】解:如图,过点A作AFDE于F,在矩形ABCD中,ABCD,AE平分BED,AFAB,BC2AB,BC2AF,ADF30°,在AFD与DCE中C=AFD=90°,ADF=DEC,AF=DC,,AFDDCE(AAS),CDE的面积AFD的面积矩形ABCD的面积ABBC2AB2,2ABE的面积矩形ABCD的面积2CDE的面积(2)AB2,ABE的面积,,故选:C【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB2、C【解析】根据反比例函数的图像性质进行判断【详解】解:,电压为定值,I关于R的函数是反比例函数,且图象在第一象限,故选C【点睛】本题考查反比例函数的图像,掌握图像性质是解题关键3、D【解析】无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项【详解】A、5是整数,是有理数,选项错误;B、是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、是无理数,选项正确.故选D【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数4、D【解析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A.既不是轴对称图形,也不是中心对称图形,所以A错误;B.既不是轴对称图形,也不是中心对称图形,所以B错误;C.是中心对称图形,不是轴对称图形,所以C错误;D.是轴对称图形,不是中心对称图形,所以D正确.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握定义是本题解题的关键.5、D【解析】根据轴对称图形的概念求解【详解】A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确故选D【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合6、C【解析】根据中位数的定义即可解答【详解】解:把这些数从小到大排列为:28,29,29,29,31,31,31,31,最中间的两个数的平均数是:30,则这组数据的中位数是30;故本题答案为:C.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.7、A【解析】【分析】设,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出【详解】轴,B两点纵坐标相同,设,则,故选A【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.8、D【解析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可【详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,解不等式得,x2.5,解不等式的,x5,所以,不等式组的解集是2.5x5,正确反映y与x之间函数关系的图象是D选项图象故选:D9、B【解析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B、早晨的太阳从东方升起,是必然事件,故本选项正确;C、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误故选B10、C【解析】根据数轴上点的位置判断出a4与a11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果【详解】解:根据数轴上点的位置得:5a10,a40,a110,则原式|a4|a11|a4+a112a15,故选:C【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、n1(n为整数)【解析】试题分析:观察图形可得,第1个图形中阴影部分的面积=()0=1;第2个图形中阴影部分的面积=()1=;第3个图形中阴影部分的面积=()2=;第4个图形中阴影部分的面积=()3=;根据此规律可得第n个图形中阴影部分的面积=()n-1(n为整数)考点:图形规律探究题12、1【解析】根据“方程 x2+(m21)x+1+m0 的两根互为相反数”,利用一元二次方程根与系数的关系,列出关于 m 的等式,解之,再把 m 的值代入原方程, 找出符合题意的 m 的值即可【详解】方程 x2+(m21)x+1+m0 的两根互为相反数,1m20,解得:m1 或1,把 m1代入原方程得:x2+20,该方程无解,m1不合题意,舍去,把 m1代入原方程得: x20,解得:x1x20,(符合题意),m1,故答案为1【点睛】本题考查了根与系数的关系,正确掌握一元二次方程两根之和,两个之积与系数之间的关系式解题的关键若x1,x2为方程的两个根,则x1,x2与系数的关系式:,.13、或【解析】当F在边AB上时,如图1作辅助线,先证明,得,根据正切的定义表示即可;当F在BA的延长线上时,如图2,同理可得:,表示AF的长,同理可得结论【详解】解:分两种情况:当F在边AB上时,如图1,过E作,交AB于G,交DC于H,四边形ABCD是正方形,中,即;当F在BA的延长线上时,如图2,同理可得:,中,【点睛】本题考查了正方形的性质、三角形全等的性质和判定、三角函数等知识,熟练掌握正方形中辅助线的作法是关键,并注意F在直线AB上,分类讨论14、【解析】如图,作辅助线CF;证明CFAB(垂径定理的推论);证明ADAB,得到ADOC,ADECOE;得到AD:CO=DE:OE,求出CO的长,即可解决问题【详解】如图,连接CO并延长,交AB于点F;AC=BC,CFAB(垂径定理的推论);BD是O的直径,ADAB;设O的半径为r;ADOC,ADECOE,AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,5:r=3:(r-3),解得:r=,故答案为【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断15、2, 0x2或x2 【解析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由 函数图象可知,乙比甲晚出发2小时故答案为2(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0x2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:ykx,由图象可知,(4,20)在函数图象上,代入得:204k,k5,甲的函数解析式为:y5x设乙的函数解析式为:ykx+b,将坐标(2,0),(2,20)代入得: ,解得 ,乙的函数解析式为:y20x20 由得 , ,故 x2符合题意故答案为0x2或x2【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据16、(50)【解析】过点A作AMDC于点M,过点B作BNDC于点N则AMBN通过解直角ACM和BCN分别求得CM、CN的长度,则易得MNAB【详解】解:如图,过点A作AMDC于点M,过点B作BNDC于点N,则ABMN,AMBN在直角ACM,ACM45°,AM50m,CMAM50m在直角BCN中,BCNACBACD60°,BN50m,CN(m),MNCMCN50(m)则ABMN(50)m故答案是:(50)【点睛】本题考查了解直角三角形的应用解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题三、解答题(共8题,共72分)17、(1)x0;(2)1;(3)见解析;(4)图象关于y轴对称.【解析】(1)由分母不等于零可得答案;(2)求出y=1时x的值即可得;(3)根据表格中的数据,描点、连线即可得;(4)由函数图象即可得【详解】(1)函数y=的定义域是x0,故答案为x0;(2)当y=1时,=1,解得:x=1或x=1,m=1,故答案为1;(3)如图所示:(4)图象关于y轴对称,故答案为图象关于y轴对称【点睛】本题主要考查反比例函数的图象与性质,解题的关键是掌握反比例函数自变量的取值范围、函数值的求法、列表描点画函数图象及反比例函数的性质18、(1);(2)【解析】(1)先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同的方法即可得出结论【详解】(1)当时,画出的图形如图1所示,为等边三角形,为等边三角形的中线 是的垂直平分线,为线段上的点,线段为线段绕点顺时针旋转所得,;如图2,延长到点,使得,连接,作于点,点在上,点在的延长线上,又,于点,在等边三角形中,为中线,点在上,即为底角为的等腰三角形(2)如图3,当时,在上取一点使,为等边三角形,为等边三角形的中线,为线段上的点,是的垂直平分线,线段为线段绕点顺时针旋转所得,又,于点,在等边三角形中,为中线,点在上,【点睛】此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键19、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.【解析】(1)根据单价乘以数量,可得利润,可得答案.(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案【详解】(1)当1x50时,当50x90时,综上所述:.(2)当1x50时,二次函数开口下,二次函数对称轴为x=45,当x=45时,y最大=-2×452+180×45+2000=6050,当50x90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.(3)解,结合函数自变量取值范围解得,解,结合函数自变量取值范围解得所以当20x60时,即共41天,每天销售利润不低于4800元【点睛】本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用20、(1)25(2)12【解析】整体分析:(1)用勾股定理求斜边AB的长;(2)用三角形的面积等于底乘以高的一半求解.解:(1).在中,.,(2).,即,20×1525CD.21、(3)证明见试题解析;(3)3【解析】试题分析:(3)先得出ODAC,有ODG=DGC,再由DGAC,得到DGC=90°,ODG=90°,得出ODFG,即可得出直线FG是O的切线(3)先得出ODFAGF,再由cosA=,得出cosDOF=;然后求出OF、AF的值,即可求出AG、CG的值试题解析:(3)如图3,连接OD,AB=AC,C=ABC,OD=OB,ABC=ODB,ODB=C,ODAC,ODG=DGC,DGAC,DGC=90°,ODG=90°,ODFG,OD是O的半径,直线FG是O的切线;(3)如图3,AB=AC=30,AB是O的直径,OA=OD=30÷3=5,由(3),可得:ODFG,ODAC,ODF=90°,DOF=A,在ODF和AGF中,DOF=A,F=F,ODFAGF,cosA=,cosDOF=,OF=,AF=AO+OF=,解得AG=7,CG=ACAG=307=3,即CG的长是3考点:3切线的判定;3相似三角形的判定与性质;3综合题22、(1)b=3,k=10;(2)SAOB=【解析】(1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,5),即可得到结论;(2)过A作ADx轴于D,BEx轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0)求出OC=3,然后根据三角形的面积公式即可得到结论.解:()把代入把代入,(),时,又, 23、(1)抛物线的解析式为;(2)PM=(0m3);(3)存在这样的点P使PFC与AEM相似此时m的值为或1,PCM为直角三角形或等腰三角形【解析】(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长(3)由于PFC和AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和AEM相似时,分两种情况进行讨论:PFCAEM,CFPAEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出PCM的形状【详解】解:(1)抛物线(a0)经过点A(3,0),点C(0,4),解得抛物线的解析式为(2)设直线AC的解析式为y=kx+b,A(3,0),点C(0,4),解得直线AC的解析式为点M的横坐标为m,点M在AC上,M点的坐标为(m,)点P的横坐标为m,点P在抛物线上,点P的坐标为(m,)PM=PEME=()()=PM=(0m3)(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似理由如下:由题意,可得AE=3m,EM=,CF=m,PF=,若以P、C、F为顶点的三角形和AEM相似,分两种情况:若PFCAEM,则PF:AE=FC:EM,即():(3m)=m:(),m0且m3,m=PFCAEM,PCF=AMEAME=CMF,PCF=CMF在直角CMF中,CMF+MCF=90°,PCF+MCF=90°,即PCM=90°PCM为直角三角形若CFPAEM,则CF:AE=PF:EM,即m:(3m)=():(),m0且m3,m=1CFPAEM,CPF=AMEAME=CMF,CPF=CMFCP=CMPCM为等腰三角形综上所述,存在这样的点P使PFC与AEM相似此时m的值为或1,PCM为直角三角形或等腰三角形24、1【解析】原式第一项利用乘方法则计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简即可得到结果【详解】解:原式=11×+1+=1+1+=1【点睛】此题考查了含有特殊角的三角函数值的运算,熟练掌握各运算法则是解题的关键.