2022-2023学年山东省青岛市第十六中学中考数学考前最后一卷含解析.doc
-
资源ID:87797419
资源大小:806.50KB
全文页数:20页
- 资源格式: DOC
下载积分:25金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022-2023学年山东省青岛市第十六中学中考数学考前最后一卷含解析.doc
2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在直角坐标系中,直线与坐标轴交于A、B两点,与双曲线()交于点C,过点C作CDx轴,垂足为D,且OA=AD,则以下结论:;当0x3时,;如图,当x=3时,EF=;当x0时,随x的增大而增大,随x的增大而减小其中正确结论的个数是( )A1B2C3D42“赶陀螺”是一项深受人们喜爱的运动如图所示是一个陀螺的立体结构图已知底面圆的直径AB8 cm,圆柱的高BC6 cm,圆锥的高CD3 cm,则这个陀螺的表面积是()A68 cm2B74 cm2C84 cm2D100 cm23一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()ABC4D2+4下列运算正确的是()Ax4+x4=2x8 B(x2)3=x5 C(xy)2=x2y2 Dx3x=x45三个等边三角形的摆放位置如图,若360°,则12的度数为( ) A90°B120°C270°D360°6下列图形中,是中心对称但不是轴对称图形的为()ABCD7如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则BCD的度数为() A100°B80°C50°D20°8如图,四边形ABCD是正方形,点P,Q分别在边AB,BC的延长线上且BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:AQDP;OAEOPA;当正方形的边长为3,BP1时,cosDFO=,其中正确结论的个数是( )A0B1C2D39如图,G,E分别是正方形ABCD的边AB,BC上的点,且AGCE,AEEF,AEEF,现有如下结论:BEDH;AGEECF;FCD45°GBEECH其中,正确的结论有( )A4 个B3 个C2 个D1 个10如图,O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是( )ADAC=DBC=30°BOABC,OBACCAB与OC互相垂直DAB与OC互相平分二、填空题(共7小题,每小题3分,满分21分)11如图,线段AB两端点坐标分别为A(1,5)、B(3,3),线段CD两端点坐标分别为C(5,3)、D (3,1)数学课外兴趣小组研究这两线段发现:其中一条线段绕着某点旋转一个角度可得到另一条线段,请写出旋转中心的坐标_12点(a1,y1)、(a1,y2)在反比例函数y(k0)的图象上,若y1y2,则a的范围是_13圆锥的底面半径为4cm,高为5cm,则它的表面积为_ cm114如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要_个小立方块15.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角ACB=120°, 则此圆锥高 OC 的长度是_16分解因式:a3-12a2+36a=_17如图,直线a,b被直线c所截,ab,1=2,若3=40°,则4等于_三、解答题(共7小题,满分69分)18(10分)解方程(1)x11x10(1)(x+1)14(x1)119(5分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为和45°,且tan=1求灯杆AB的长度20(8分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0a200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案21(10分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高你认为这种测量方法是否可行?请说明理由22(10分)如图,ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)画出ABC关于y轴的对称图形A1B1C1,并写出B1点的坐标;(2)画出ABC绕原点O旋转180°后得到的图形A2B2C2,并写出B2点的坐标;(3)在x轴上求作一点P,使PAB的周长最小,并直接写出点P的坐标23(12分)已知AB是O的直径,弦CDAB于H,过CD延长线上一点E作O的切线交AB的延长线于F,切点为G,连接AG交CD于K(1)如图1,求证:KEGE;(2)如图2,连接CABG,若FGBACH,求证:CAFE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE,AK,求CN的长24(14分)正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF连接BF,作EHBF所在直线于点H,连接CH(1)如图1,若点E是DC的中点,CH与AB之间的数量关系是_;(2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由;(3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】试题分析:对于直线,令x=0,得到y=2;令y=0,得到x=1,A(1,0),B(0,2),即OA=1,OB=2,在OBA和CDA中,AOB=ADC=90°,OAB=DAC,OA=AD,OBACDA(AAS),CD=OB=2,OA=AD=1,(同底等高三角形面积相等),选项正确;C(2,2),把C坐标代入反比例解析式得:k=4,即,由函数图象得:当0x2时,选项错误;当x=3时,即EF=,选项正确;当x0时,随x的增大而增大,随x的增大而减小,选项正确,故选C考点:反比例函数与一次函数的交点问题2、C【解析】试题分析:底面圆的直径为8cm,高为3cm,母线长为5cm,其表面积=×4×5+42+8×6=84cm2,故选C考点:圆锥的计算;几何体的表面积3、B【解析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120°,并且所走过的两路径相等,求出一个乘以2即可得到【详解】如图:BC=AB=AC=1,BCB=120°,B点从开始至结束所走过的路径长度为2×弧BB=2×.故选B4、D【解析】A. x4+x4=2x4 ,故错误;B. (x2)3=x6 ,故错误;C. (xy)2=x22xy+y2 ,故错误; D. x3x=x4,正确,故选D.5、B【解析】先根据图中是三个等边三角形可知三角形各内角等于60°,用1,2,3表示出ABC各角的度数,再根据三角形内角和定理即可得出结论【详解】图中是三个等边三角形,3=60°,ABC=180°-60°-60°=60°,ACB=180°-60°-2=120°-2,BAC=180°-60°-1=120°-1,ABC+ACB+BAC=180°,60°+(120°-2)+(120°-1)=180°,1+2=120°故选B.【点睛】考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键6、C【解析】试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C考点:中心对称图形;轴对称图形7、B【解析】解:如图所示:由题意可得:1=30°,3=50°,则2=30°,故由DCAB,则4=30°+50°=80°故选B点睛:此题主要考查了方向角的定义,正确把握定义得出3的度数是解题关键8、C【解析】由四边形ABCD是正方形,得到AD=BC, 根据全等三角形的性质得到P=Q,根据余角的性质得到AQDP;故正确;根据勾股定理求出直接用余弦可求出【详解】详解:四边形ABCD是正方形,AD=BC, BP=CQ,AP=BQ,在DAP与ABQ中, DAPABQ, P=Q, AQDP;故正确;无法证明,故错误BP=1,AB=3, 故正确,故选C【点睛】考查正方形的性质,三角形全等的判定与性质,勾股定理,锐角三角函数等,综合性比较强,对学生要求较高9、C【解析】由BEG45°知BEA45°,结合AEF90°得HEC45°,据此知 HCEC,即可判断;求出GAE+AEG45°,推出GAEFEC,根据 SAS 推出GAECEF,即可判断;求出AGEECF135°,即可判断;求出FEC45°,根据相似三角形的判定得出GBE和ECH 不相似,即可判断【详解】解:四边形 ABCD 是正方形,ABBCCD,AGGE,BGBE,BEG45°,BEA45°,AEF90°,HEC45°, HCEC,CDCHBCCE,即 DHBE,故错误;BGBE,B90°,BGEBEG45°,AGE135°,GAE+AEG45°,AEEF,AEF90°,BEG45°,AEG+FEC45°,GAEFEC,在GAE 和CEF 中,AG=CE,GAE=CEF,AE=EF,GAECEF(SAS),正确;AGEECF135°,FCD135°90°45°,正确;BGEBEG45°,AEG+FEC45°,FEC45°,GBE 和ECH 不相似,错误; 故选:C【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大10、C【解析】(1)DAC=DBC=30°,AOC=BOC=60°,又OA=OC=OB,AOC和OBC都是等边三角形,OA=AC=OC=BC=OB,四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)OABC,OBAC,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB是菱形;(4)AB与OC互相平分,四边形OACB是平行四边形,又OA=OB,四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.二、填空题(共7小题,每小题3分,满分21分)11、或【解析】分点A的对应点为C或D两种情况考虑:当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,点E即为旋转中心;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,点M即为旋转中心此题得解【详解】当点A的对应点为点C时,连接AC、BD,分别作线段AC、BD的垂直平分线交于点E,如图1所示:点的坐标为,B点的坐标为,点的坐标为;当点A的对应点为点D时,连接AD、BC,分别作线段AD、BC的垂直平分线交于点M,如图2所示:点的坐标为,B点的坐标为,点的坐标为综上所述:这个旋转中心的坐标为或故答案为或【点睛】本题考查了坐标与图形变化中的旋转,根据给定点的坐标找出旋转中心的坐标是解题的关键12、1a1【解析】解:k0,在图象的每一支上,y随x的增大而减小,当点(a-1,y1)、(a+1,y2)在图象的同一支上,y1y2,a-1a+1,解得:无解;当点(a-1,y1)、(a+1,y2)在图象的两支上,y1y2,a-10,a+10,解得:-1a1故答案为:-1a1【点睛】本题考查反比例函数的性质13、【解析】利用勾股定理求得圆锥的母线长,则圆锥表面积=底面积+侧面积=×底面半径的平方+底面周长×母线长÷1.【详解】底面半径为4cm,则底面周长=8cm,底面面积=16cm1;由勾股定理得,母线长=,圆锥的侧面面积,它的表面积=(16+4 )cm1= cm1 ,故答案为:.【点睛】本题考查了有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(1)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.14、54【解析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,搭成的大正方体的共有4×4×4=64个小正方体,至少还需要64-10=54个小正方体【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体15、4【解析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出 OA,最后用勾股定理即可得出结论【详解】设圆锥底面圆的半径为 r,AC=6,ACB=120°,=2r, r=2,即:OA=2,在 RtAOC 中,OA=2,AC=6,根据勾股定理得,OC=4, 故答案为4【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出 OA的长是解本题的关键16、a(a-6)2【解析】原式提取a,再利用完全平方公式分解即可【详解】原式=a(a2-12a+36)=a(a-6)2, 故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键17、70°【解析】试题分析:由平角的定义可知,1+2+3=180°,又1=2,3=40°,所以1=(180°-40°)÷2=70°,因为b,所以4=1=70°.故答案为70°.考点:角的计算;平行线的性质.三、解答题(共7小题,满分69分)18、(1)x1=1+,x1=1;(1)x1=3,x1=【解析】(1)配方法解;(1)因式分解法解.【详解】(1)x11x1=2,x11x+1=1+1,(x1)1=3,x1= ,x=1,x1=1,x1=1,(1)(x+1)1=4(x1)1(x+1)14(x1)1=2(x+1)11(x1)1=2(x+1)1(1x1)1=2(x+11x+1)(x+1+1x1)=2(x+3)(3x1)=2x1=3,x1=【点睛】考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程19、灯杆AB的长度为2.3米【解析】过点A作AFCE,交CE于点F,过点B作BGAF,交AF于点G,则FG=BC=2设AF=x知EF=AF=x、DF=,由DE=13.3求得x=11.4,据此知AG=AFGF=1.4,再求得ABG=ABCCBG=30°可得AB=2AG=2.3【详解】过点A作AFCE,交CE于点F,过点B作BGAF,交AF于点G,则FG=BC=2由题意得:ADE=,E=45°设AF=xE=45°,EF=AF=x在RtADF中,tanADF=,DF=DE=13.3,x+=13.3,x=11.4,AG=AFGF=11.42=1.4ABC=120°,ABG=ABCCBG=120°90°=30°,AB=2AG=2.3答:灯杆AB的长度为2.3米【点睛】本题主要考查解直角三角形仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力20、 (1) =100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100x),即y=(a100)x+50000,分三种情况讨论,当0a100时,y随x的增大而减小,a=100时,y=50000,当100m200时,a1000,y随x的增大而增大,分别进行求解【详解】(1)根据题意,y=400x+500(100x)=100x+50000;(2)100x2x,x,y=100x+50000中k=1000,y随x的增大而减小,x为正数,x=34时,y取得最大值,最大值为46600,答:该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)据题意得,y=(400+a)x+500(100x),即y=(a100)x+50000,33x60,当0a100时,y随x的增大而减小,当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大a=100时,a100=0,y=50000,即商店购进A型电脑数量满足33x60的整数时,均获得最大利润;当100a200时,a1000,y随x的增大而增大,当x=60时,y取得最大值即商店购进60台A型电脑和40台B型电脑的销售利润最大【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.21、这种测量方法可行,旗杆的高为21.1米【解析】分析:根据已知得出过F作FGAB于G,交CE于H,利用相似三角形的判定得出AGFEHF,再利用相似三角形的性质得出即可详解:这种测量方法可行 理由如下:设旗杆高AB=x过F作FGAB于G,交CE于H(如图)所以AGFEHF因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.11.1=2,AG=x1.1由AGFEHF,得,即,所以x1.1=20,解得x=21.1(米)答:旗杆的高为21.1米点睛:此题主要考查了相似三角形的判定与性质,根据已知得出AGFEHF是解题关键22、(1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A,连接AB与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可试题解析:(1)、A1B1C1如图所示;B1点的坐标(-4,2) (2)、A2B2C2如图所示;B2点的坐标:(-4,-2) (3)、PAB如图所示,P(2,0)考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换23、(1)证明见解析;(2)EAD是等腰三角形证明见解析;(3). 【解析】试题分析:(1)连接OG,则由已知易得OGE=AHK=90°,由OG=OA可得AGO=OAG,从而可得KGE=AKH=EKG,这样即可得到KE=GE;(2)设FGB=,由AB是直径可得AGB=90°,从而可得KGE=90°-,结合GE=KE可得EKG=90°-,这样在GKE中可得E=2,由FGB=ACH可得ACH=2,这样可得E=ACH,由此即可得到CAEF;(3)如下图2,作NPAC于P,由(2)可知ACH=E,由此可得sinE=sinACH=,设AH=3a,可得AC=5a,CH=4a,则tanCAH=,由(2)中结论易得CAK=EGK=EKG=AKC,从而可得CK=AC=5a,由此可得HK=a,tanAKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由BHK=BKG=90°,可得ABG+HKG=180°,结合AKH+GKG=180°,ACG=ABG可得ACG=AKH,在RtAPN中,由tanCAH=,可设PN=12b,AP=9b,由tanACG=tanAKH=3可得CP=4b,由此可得AC=AP+CP=5,则可得b=,由此即可在RtCPN中由勾股定理解出CN的长.试题解析:(1)如图1,连接OGEF切O于G,OGEF,AGO+AGE=90°,CDAB于H,AHD=90°,OAG=AKH=90°,OA=OG,AGO=OAG,AGE=AKH,EKG=AKH,EKG=AGE,KE=GE(2)设FGB=,AB是直径,AGB=90°,AGE=EKG=90°,E=180°AGEEKG=2,FGB=ACH,ACH=2,ACH=E,CAFE(3)作NPAC于PACH=E,sinE=sinACH=,设AH=3a,AC=5a,则CH=,tanCAH=,CAFE,CAK=AGE,AGE=AKH,CAK=AKH,AC=CK=5a,HK=CKCH=4a,tanAKH=3,AK=,AK=,a=1AC=5,BHD=AGB=90°,BHD+AGB=180°,在四边形BGKH中,BHD+HKG+AGB+ABG=360°,ABG+HKG=180°,AKH+HKG=180°,AKH=ABG,ACN=ABG,AKH=ACN,tanAKH=tanACN=3,NPAC于P,APN=CPN=90°,在RtAPN中,tanCAH=,设PN=12b,则AP=9b,在RtCPN中,tanACN=3,CP=4b,AC=AP+CP=13b,AC=5,13b=5,b=,CN=24、(1)CH=AB;(2)成立,证明见解析;(3)【解析】(1)首先根据全等三角形判定的方法,判断出ABFCBE,即可判断出1=2;然后根据EHBF,BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出4=HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可(2)首先根据全等三角形判定的方法,判断出ABFCBE,即可判断出1=2;然后根据EHBF,BCE=90°,可得C、H两点都在以BE为直径的圆上,判断出4=HBC,即可判断出CH=BC,最后根据AB=BC,判断出CH=AB即可(3)首先根据三角形三边的关系,可得CKAC+AK,据此判断出当C、A、K三点共线时,CK的长最大;然后根据全等三角形判定的方法,判断出DFKDEH,即可判断出DK=DH,再根据全等三角形判定的方法,判断出DAKDCH,即可判断出AK=CH=AB;最后根据CK=AC+AK=AC+AB,求出线段CK长的最大值是多少即可【详解】解:(1)如图1,连接BE,在正方形ABCD中,AB=BC=CD=AD,A=BCD=ABC=90°,点E是DC的中点,DE=EC,点F是AD的中点,AF=FD,EC=AF,在ABF和CBE中,ABFCBE,1=2,EHBF,BCE=90°,C、H两点都在以BE为直径的圆上,3=2,1=3,3+4=90°,1+HBC=90°,4=HBC,CH=BC,又AB=BC,CH=AB(2)当点E在DC边上且不是DC的中点时,(1)中的结论CH=AB仍然成立如图2,连接BE,在正方形ABCD中,AB=BC=CD=AD,A=BCD=ABC=90°,AD=CD,DE=DF,AF=CE,在ABF和CBE中, ABFCBE,1=2,EHBF,BCE=90°,C、H两点都在以BE为直径的圆上,3=2,1=3,3+4=90°,1+HBC=90°,4=HBC,CH=BC,又AB=BC,CH=AB(3)如图3,CKAC+AK,当C、A、K三点共线时,CK的长最大,KDF+ADH=90°,HDE+ADH=90°,KDF=HDE,DEH+DFH=360°-ADC-EHF=360°-90°-90°=180°,DFK+DFH=180°,DFK=DEH,在DFK和DEH中,DFKDEH,DK=DH,在DAK和DCH中,DAKDCH,AK=CH又CH=AB,AK=CH=AB,AB=3,AK=3,AC=3,CK=AC+AK=AC+AB=,即线段CK长的最大值是考点:四边形综合题